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Abstract. Consideration herein is the inviscid limit of the 3-D incompressible axisymmetric
Navier-Stokes-Boussinesq system with partial viscosity. We obtain uniform estimates of the solutions
of this system with respect to the viscosity. We then provide a strong convergence result in the H5~2
norm of the viscous solutions of this Navier-Stokes-Boussinesq system to the one of Euler-Boussinesq
equations.
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1. Introduction In this paper we deal with the 3-D incompressible anisotropic
Navier-Stokes-Boussinesq equations

Opu+uy-Vp,—Ap,=0,  (t,z)€ Ry xR3
Opuy +uy - Vuy, — pd2u, +Vp,=pue.,

: (1.1)
divu, =0,

— 0 _ 0
Upfg=o = U Pujt=0=F"-

These equations include the temperature p, (or the density in the modeling of geophys-
ical fluids), the solenoidal velocity field w, = (u, 1,uu2,u,3)T, and the fluid pressure
pu. The term py e, with e, = (0,0,1)T takes into account the influence of the gravity
and the stratification on the notion of the fluid. And the partial viscosity coefficient u
is a positive constant. Note that when the initial density p° is identically a nonnega-
tive constant, the system (1.1) reduces, in general, to the following 3-D incompressible
anisotropic Navier-Stokes system

Outu-Vu—vApu—pd*u+Vp=0 in RT xR3,
divu=0, (1.2)
u|t:0 = ’LLO7
where the usual Laplacian in the classical Navier-Stokes equations is substituted by the
anisotropic Laplacian vAy, + ud? with v, u >0, which appears in geophysical fluids (see
for instance [9]). The system (1.2) has been extensively studied by many mathematicians
recently (see [8], [26], [33], [10], [37], [18], [4] etc.).
The system (1.1) is an anisotropic version of the classical n-D incompressible Navier-
Stokes-Boussinesq equations (n=2,3)

Otp+u-Vp—rAp=0, (t,r)e Ry xR"
Oru+u-Vu—pAu+Vp=pe.,
divu=0,

ult:0:u07 P|t:0:p0a

(1.3)
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2 Inviscid limit

which are widely used to model the dynamics of the atmosphere or the ocean [29], and
arise from the density dependent fluid equations by using the Boussinesq approxima-
tion which consists in neglecting the density dependence in all the terms but the one
involving the gravity. This Boussinesq approximation can be rigorously justified from
compressible fluid equations by a simultaneous low Mach number/Froude number limit
(see [15]).

In two dimensional, the standard energy method enables us to establish the global
existence of regular solutions of (1.3) for the case where p and k are positive constants.
But, for the case u=k=0, the global well-posedness of (1.3) for some non constant pg
is still a challenging open problem. For the case >0, k=0, or k>0, u >0, the global
well-posedness of (1.3) was independently obtained [1,7,19, 20, 25], see also [21,22] for
the global well-posedness in the critical spaces.

In three dimensional, R. Danchin and M. Paicu [14] proved the global existence
of Leray weak solution of the system (1.3) and its global well-posedness with small
initial data, and also obtained an existence and uniqueness results for small initial data
belonging to some critical Lorentz spaces in [13]. As the outstanding open problem in
the 3-D incompressible Navier-Stokes equations, there are few results about the global
well-posedness result of (1.3) for large initial data in 3-D.

Many mathematicians devoted to the study of some special large initial data which
may globally generate the smooth solution of the 3-D incompressible Navier-Stokes
or FEuler systems. There is an interesting case of the global well-posedness result for
both the three-dimensional Navier-Stokes and Euler systems (see [34]) corresponding to
large initial data but with special geometry, called axisymmetric without swirl, which
means that they have, in cylindrical coordinates (e,,eq,e.), the following structure:
v(t,x) =0v"(t,r,2)e, +v*(t,r,2)e,. Note that we assume that the velocity is invariant by
rotation around the vertical axis (axisymmetric flow) and that the angular component
v? of the vector field v is identically zero (without swirl).

Inspired by this, more recent works devoted to the study of the three-dimensional
axisymmetric Boussinesq system for different viscosities, here the velocity field v is
axisymmetric without swirl, and the axisymmetric scalar temperature p means p(t,z)=
p(t,r,z) independent of the angle 6 in cylindrical coordinates. In [23], H. Abidi, T.
Hmidi and S. Keraani proved the global well-posedness for the Navier-Stokes-Boussinesq
system (1.3) with ©>0 and k=0 with smooth axisymmetric initial data without swirl.
In [30,31] a global well-posedness of (1.3) with axisymmetric initial data without swirl
was established in the case when the viscosity only occurs in the horizontal direction.
For the case p=0 and x>0, the system (1.3) reduces to the 3-D incompressible Euler-
Boussinesq system

Op+u-Vp—Ap=0, (t,z) € Ry xR?
u+u-Vu+Vp=pe,,
divu=0,

—,0 — 0
Ujt=0=1U", Pit=0=pF"

(1.4)

which couples the Euler equation with a transport-diffusion equation governing the
temperature. Recently, under the assumptions that s> g, u® € H® is an axisymmetric
divergence free vector field without swirl, and p° is an axisymmetric function belonging
to H¥~2NL™ with m>6 and such that 7?p" € L?, T. Hmidi and F. Rousset [24] proved
the global well-posedness for the three-dimensional Euler-Boussinesq system (1.4). In
[35], S. Sokrani investigated the global well-posedness of the 3-D incompressible Navier-

Stokes-Boussinesq system with partial viscosity and axisymmetric data without swirl.
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In this paper we study the persistence of the Sobolev regularity H® with s> g for
the 3-D incompressible anisotropic Navier-Stokes-Boussinesq equations (1.1) uniformly
with respect to the viscosity p, and then investigate its inviscid limit problem (towards
to (1.4) as the partial viscosity coefficient 1 goes to zero).

Our main results are as follows.

THEOREM 1.1 (Uniform boundedness of the velocity).

Let 1 €(0,1], s> g, u0 € H® be an azisymmetric divergence free vector field without
swirl and let p° be an axisymmetric function belonging to H*~2NL™ with m>6 and
such that r2p° € L. Then there exists a unique global solution (up,pu) to the system
(1.1) satisfying

(uu’pu)EC(RJF;HS)X(C(R+;H5‘2ﬂLm)ﬁZ}oc(M;Hs)), r2pu €C(Ry;L%). (1.5)

Moreover, there holds

10l e o2 + 10l e+l 70 < 650, (1.6)
with

o1 (t) = Coexp(...exp(Cot?)...),
——
ktimes

where Cy depends only on the involved norms of the initial data and not on the viscosity
Lt

The proof relies on the uniform estimate of the Lipschitz norm of the velocity. For
this purpose we use the method developed in [24] for the inviscid case. However, the
situation in the viscous case is more complicated because of the appearance of dissipative
term. We especially have to check that it doesn’t undermine some geometric properties
of the vorticity.

REMARK 1.1.

Under the assumptions in Theorem 1.1, there exists a unique global solution (u,p)
to the system (1.4) satisfying (1.5) and (1.6).

In effect, in view of the proof of (1.6), all the estimates in it are independent of the
viscosity coefficient u, so we may repeat the argument in the proof of (1.6) in Theorem
1.1 to get the same estimates for the solution of the system (1.4).

Our second main result deals with the inviscid limit.
THEOREM 1.2 (Rate convergence).

Let (pu,uy) and (p,u) be respectively the solution of the Navier-Stokes-Boussinesq
equations (1.1) and Euler-Boussinesq systems (1.4) with the same initial data (p°,u®)
satisfying the conditions of Theorem 1.1. Then we have the rate of convergence

ot — 0l e e+ o= 7 prems 11— pll 1 < ()06 0). (L7)

The proofs of Theorems 1.1 and 1.2 are completed in Sections 4-5. We now present
a summary of the principal difficulties we encounter in our analysis as well as a sketch
of the key ideas used in our proof.

Note that in view of the proof for the 3-D axisymmetric Euler equations, the crucial
part of the proof of Theorems 1.1 is to get an a priori estimate of w,, in L*°, where w,,



4 Inviscid limit

is the angular component, the only component, of the vorticity curlu, of the velocity
field u,, ie., V X u, =w,eg, which satisfies

r

u

V@twu—&-uWVwM—u@fwuz—arpu-i-?”wu. (1.8)

In view of the method in [3], the quantity |lw,(t)| L~ may be bounded if we control the
quantity || u/f Lo, which conversely can be bounded by the Lorentz norm || <4 ..

In effect, according to (1.8), the evolution of the quantity % is governed by the

equation
o\ Wy 1
(3t+uu'v_:uaz)7:_;arpu- (19)

As mentioned in [24], the first main difficulty is to find some strong a priori estimates
on p, to control the forcing term —% P in the right-hand side of (1.9), which can be
thought as a Laplacian of p, because of the appearance of the the singularity % on the
axis 7 =0, and thus one may try to use smoothing effects of the diffusion system of p,, to
control it. Unfortunately, because of the lack of the complete Laplacian of the velocity
u,, hen we want to use this argument to deal with the advection term in the system, it is
not sufficient to obtain an estimate for %&ﬂp# in L}, .(LP) by considering the convection
term as a source term and by using the maximal smoothing effect of the heat equation.
To handle it, we turn to use more carefully the structure of the coupling between the
two equations of (1.1) in order to find suitable a priori estimates for (u,,p,). In deed,
in order to cancel the source term of the right hand side in (1.9), we apply the operator
%A’l to the equation of the density to show

1 _ 1 1 _
(O +uy -V)(;&,.A Ypu) = ;8,.@ - [;8,.A Y- Vpu, (1.10)
where the term %arp# appears in the right hand side of (1.10) with the opposite sign of
the one in the right hand side of (1.9). Motivated by [24], we introduce a good unknow
', as
w, O

=24+ IA!
B + T Pus

which, thanks to (1.9) and (1.10), satisfies that

GtFquu#~VI‘ufuaffﬂzf[%A*Huu'V]p#fuaf(%Aflp#), (1.11)
where the commutator term [Z=A~1u,-V]p,=2=A" (u, - Vp,)—u, V(ZAT1p,).

Thus the basic energy estimate of the equation (1.11) gives us that for every p € (1,400)

O -
T ®)llze SNTONee + 152 A7 - Voul Ly oy + 110 pull 2 10 (1.12)

Compared with the estimate of I', in [24] about the axisymmetric Euler-Boussinesq
equations (where the control of ||I',|| 31 can be obtained directly by using the interpo-
lation), the addition term yu[[0;pp | L2(Lr) in (1.12) can not, in general, give the estimate
of p|@zppllL2(13.1) according to Lemma 2.4, more precisely, L7 ((L?, LP](g,1)) can not be
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embedded in [L?(L?),L(LP)] (6.1) for any p>3. For this reason, we do not directly

estimate ||I',||gs1 and then ||“*||1s.1 but use the interpolation inequality to bound

2(p—3)

1Tyl za ST IIS(” 2)HF

MH3(p »  for some p>3. (1.13)

Note that H*"?(R3)< L2NLP(R?) for s> 5 and some 3 <p near 3, where ||I',,|| .2 and
ITullze are Controlled by (1.12), we may achieve (1.13) from the initial data viewpoint
since u’ € H* and p°c H*~2NL™ Wlth m>6 and r2p® € L?. In this process, the com-
plicated commutator estimate ||[2=2 >”u V1pullLi(zry will be treated more carefully.
For this, we give Proposition 3.2 in Section 3, and then deduce (1.6). In order to prove
Theorem 1.2, we use the uniform bounds of the velocity in H® combined with some
smoothing effects on the viscosity vorticity, which will be done in the last section.

The rest of the paper is organized as follows. In Section 2 we recall some basic
ingredients of Littlwood-Paley theory. Following basic definitions above, in Section 3,
we derive some qualitative and analytic properties of the flow associated to an axisym-
metric vector field and an axisymmetric scalar function. In Section 4 we first give some
necessary global a priori estimates, and then prove Theorems 1.1. The proof of Theorem
1.2 is completed in Section 5.

Let us complete this section with the notations we are going to use in this context.

Notations: Let A,B be two operators, we denote [A,B]=AB— BA, the commutator
between A and B. For a <b, we mean that there is a uniform constant C, which may
be different on different lines, such that a <Cb and Cy denotes a positive constant
depending on the initial data only.

For X a Banach space and I an interval of R, we denote by C(I;X) the set of
continuous functions on I with values in X, and by Cp(I; X) the subset of bounded
functions of C(I; X). For g€ [1,+00], the notation L%(I; X) stands for the set of mea-
surable functions on I with values in X, such that t— ||f(¢)||x belongs to L%(I).
We also denote vj, = (v1,v2)7 the horizontal components of the vector field v, and
z=(xp,r3)"T €R? with z, = (z1,22)". The operator R;; (i,7=1,2,3) means the Riesz
transform: R;; = (“)iajA_l.

2. Littlewood-Paley analysis and Lorentz spaces The proof of Theorem
1.1 requires Littlewood-Paley decomposition. Let us briefly explain how it may be
built in the case r€R3 (see e.g. [5]). Let ¢ be a smooth function supported in the

annulus €% {§€R3 <[¢]< 8} and x(€) be a smooth function supported in the ball
B (R, |¢|< 4} such that

D e =1 for ££0 and x(&)+» @27 %) =1 for all (R,
JEL q20
Then for ue S'(R3), we set

def

VgeN, Aju= p(279D)u, A_ludz'afx(D)u and Sud—ef Z Agyu,

—1<q'<q—1

we have the formal Littlewood-Paley decomposition

u=Y_ Agu VueS'(R®).

qg=>—1
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Moreover, the Littlewood-Paley decomposition satisfies the property of almost orthog-
onality:

AjAu=0 if |j—k[>2 and A;(Sp_1uldgu)=0 if |j—k[>5.
We recall now the definition of inhomogeneous Besov spaces and Bernstein type
inequalities from [5].

DEFINITION 2.1 (Definition 2.15 of [5]).
Let (p,r) €[1,40)?, s€R and ue S'(R3), we set

d .
lulls;, < (2718sulzs)

We define BS,(R*) & {ue s (R?) |||l

B, < OO}

For the convenience of the reader, in what follows, we recall some basic facts on
Littlewood-Paley theory, one may check [5] for more details.
LEMMA 2.1 ( Bernstein inequalities, [5]).

Let B be a ball and C an annulus of R3. A constant C exists so that for any positive
real number §, any non-negative integer k, any smooth homogeneous function o of degree
m, and any couple of real numbers (a, b) with b>a>1, there hold

Supp @C8B= sup ||0%u| s <CFHEFHNGE=) || L,
|a|=k

Supp @ CC=C1F%||lu||pa < sup ||0%u||pe <CHFEF||u|Lq, (2.1)

lel=k

Supp @ C6C= ||lo(D)ul|pp < Co o™ N

« 78 || o

We also recall Bony’s decomposition from [6]:

w=Tw+Tiu=T,w+Tyu+ R(u,v),

where
Tu’UdZefZSj_1uAj’U, Téud:efZSj_ngAju,
JEZ JEZ
def X . X def
R(u,v) = ZAjuAjv with Aju= Z Ajv.

JEL 7" —dl<1

In order to obtain a better description of the regularizing effect of the transport-diffusion
equation, we need to use Chemin-Lerner type spaces L7.(Bj5,.(R?)) from [5].
DEFINITION 2.2. B

Let (r,\,p)€[l,400]® and T €(0,+0c]. We define Ly.(Bj,.(RY)) the space of all
function u satisfying

lullzy (55 ) d:ef( 3 2jrs</0T”Aju(t)”2p dt)g)% .

j=—1

with the usual change if r=o00. For short, we just denote this space by Z}(B;’,,).
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The relationships between these spaces are detailed in the following lemma, which
is a direct consequence of the Minkowski inequalities.
LEMMA 2.2.

Let seR,e>0,r>1 and (pl,pg) €[1,00]%. Then we have the following embeddings

s S ~T S T S—e€ :
TBphm %LTBpl,pz %LTBpl,pzvlf r<p2,

T Rst+e Tr ps r DS :
LTBPth - LTBPh:Dz - LTBPl,;Dz JAf > po.

To prove Theorem 1.1, we also need to use Lorentz space LP'4(R?). For the conve-
nience of the readers, we recall some basic facts on LP4(R?) from [17,27,32]:
DEFINITION 2.3 (Definition 1.4.6 of [17]).

For a measurable function f on R3, we define its non-increasing rearrangement by

770 Fint {5>0, p({a, | f(2)] > 5}) <t}

where p denotes the usual Lebesque measure. For (p,q) € [1,4+00]?, the Lorentz space
LP9(R3) is the set of functions f such that ||f|| e <00, with

(oo} . qd %
1lzra ([ Groyg). en<o<s
Lr.a —

supt%f*(t), forq=oo.
>0

We remark that Lorentz spaces can also be defined by real interpolation from
Lebesgue spaces (see for instance Definition 2.3 of [27]):

(LPO’LM)(B’q) — L;D,q7

where 1 <pg<p<pi; <00, [ satisfies %zlg—oﬁ—i—pﬂl and 1 <g<oo.
To establish some functional inequalities involving Lorentz spaces the following

classical calculus will be very useful.
LEMMA 2.3 (see pages 18-20 of [27]).
Let 1<p<oo and 1< g <00, we have the following assertions.
e For the Riesz transform R;; =8;0;A~', i,j=1,2, there holds

IRij fllea S| fllzooa-
° If%:pil—i—pi2 and %:i—i-q%, then
I fgllea S fllLriarllgllLez.o.
o [fl<p<oo, L+l=-L+L and ;=L + -, then
If*glleea S| flleevallgllLrz-e,

_ 1 1
for p=o0, and R =1, then

1 #gllLee SNl zoran gl rz-oe.
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e For 1<p<oo and 1<q <gs <00, we have

LP1 < [Prd2 and PP =[P,

The following Lions-Peetre formula for the space-time interpolation has made a
special contribution to the proof of Theorem 1.1.
LEMMA 2.4 ( [28], [11]).

Let (Ao, A1,A) be an interpolation triple. Then

(i) for po,p1 €[1,+00], 6€(0,1), there holds

[L7°(Ao), L (A1)] 5 oy = LU (Ao, Ar6.0))

: _ . 1 _1-6, 6.
provided q=p(0) with O Pt
(1) for 1 <q<p<+o0, #€(0,1), there holds

[L7(A0), L7 (A1)] 1,y = L (Ao, A} (5.0).

and the reverse inclusion holds for 1 <p<q<+o0.

In order to estimate the convection terms in (1.1) and (1.4), we need to state some
useful commutator estimates.
LEMMA 2.5 (Lemmas 2.7 and 2.8 in [24]).
(1) Given (p,t,q,m)€[1,+oc]* such that
1 1 1 1

1
I+—=—+-+—, p>t and ¢>3(1—-).
p t g m t

Let f, g and h be three functions such that Vf€ L9, g€ L™ and x F~*he L. Then

I1A(D), flgllze < Cllz F~ Rl LIV £l allgll - (2.2)

where C is a constant independent of f, g, and h.
(2)Given (p,t,m) € [1,+00]® such that %: % + % Then there ezists C' >0 such that

for VfelLt, ge L™ and for every qe NU{0}

IAq, Agllyirr <CIVFlLellglm (2.3)
with the definition ||¢||yi1., = ||V Lr-

3. Some estimates on axisymmetric functions

This section is concerned with the study of actions of some operators over axisym-
metric functions.

Let’s recall first the identity about the action of the operator %A‘l over axisym-
metric functions in [24].
PROPOSITION 3.1 (Proposition 2.9 in [24]).

For every axisymmetric smooth scalar function f, we have

O
r
with R;; =0;;(—A)~! fori,j=1,2.

With the aid of the identity (3.1) and the commutator estimate (2.2), similar but
more complicated than the proof of Theorem 3.1 in [24], we have

L1T2

-1 .’II% .’II%
A f:ﬁRllf(af)—FﬁRQQf(aﬁ)—Q R12f(33> (31)

r2
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ProrosSITION 3.2.

Let 2<p<6, v be an azisymmetric smooth and divergence free without swirl vector
field, curlv=wey and p an axisymmetric smooth scalar function. Then we have, with
the notation xp = (x1,x2), that

Or
I=-A75 0 Vipller Slw/rllee (ol zsa + ol +llownllLonps, |, ) (32)
+llw/rllez (el so,, +llellez +llpzall | o).
G—p’

Proof. Since the functions p and v-Vp are axisymmetric, an application of the
identity (3.1) of Proposition 3.1 shows that

Or \_
7A 'p(x) = Z aij(z)Rijp(z)
ij=1
and
2
— AT 0-Vp)(2)= ) aij(@)Rij(v-Vp)(2)
i,j=1
with
z3 122 at
all(aﬁ):ﬁ,a12($):agl(l'):—TT,agg(l‘):ﬁ. (33)

Hence, since the velocity v is divergence-free,

2
% a0 Tloto)= Y o) ([Reg 0 Vo).
ij—1

which immediately, according to the fact |a;;(z)| <1 (Va €R3, i,j=1,2), gives us that

1A 0 Vol < 3 ldiv([Res, o)l (3.4)

ij=1
Let’s now bound the L? norm of terms in div([R;;,v]p) :Zizl Ok([Rij,v*]p) step by

step.
Since an application of the Biot-Savart law shows

vl=A"1 (cos(@)t%,w) =A"19, (xl%)7 v?=A""1 (sin(@)ﬁgw) =A"19, (acg%),

the terms 0 ([Rij,v!]p) and 92([Ri;,v%]p) can be treated in same way and hence, we
shall prove the estimate of the first one only.
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e Estimates of 91 ([R;;,v*]p). Before proceeding it, let us split the term 9 ([Ri;,v']p)
into thirteen terms by using Bony’s decomposition d; ([R;;,v!]p) = Zéil I, with

=Rus(w/r)Lijp, 1= 0327 w/r)1 Liip, s =01 ) [Rij,Sq-1(L(w/r))]Agp,

=0
14—;)01 i (Ag(L(@/r)Sy-1p), Is == goalm L(w/r)RijSq-1p},
16:;1§[RZJ,A( L(w/r))Agp, I = KZZO[MU,A( Lw/))Agp,
Q;Z@almq(w/r)&jéqp, Iy= ;;[Rmsq_ﬂw1<w/r>>]Aq<x1p>,
Iw=61§>jjm—j,Aq<aaA (w/r)IA (w)q
In=alq_1;<o[ i3s8q (0387 (1)) Ag (1),
112=Z>jo[75;:Aq<amA1<w/r>]sq_1<x1p>,
113=quO[Rij,AqwaA-l(w/r))}alSq1<x1p>7

where Egj =—-20 A‘lRij + ;1 8jA_1 + 5j18iA_1 with d;; denotes the Kronecker symbol,
Lij= QRHA* and £=—2Ri3A"!. We estimates them term by term.
For I, since Rq3 is a Rlesz operator and the operator E has a convolution kernel

whose behavior looks like | ‘2 (€ L3/%°°), we deduce from Lemma 2.3 that

I1llze = IRas(w/r)Liipll e < [Ras(w/r)llpe [ Lplle < lw/rllzollplLas-

Similarly, for I, =d3A" (w/r)d1LL;p, 81L}; is a Riesz operator and the behavior of
O3A~1 is similar to the one of Ellj, then we use Holder’s inequality and Sobolev embed-
dings to show

122l e < (10587 w/T) ol Lijpll | oo SIVOA™ w/r)ll2llpll | e

<
Slw/rllzzllol e -
In order to estimate I3, we first get that there exists a function 1) € S(R?) such that

L= 0i{[¢4(D),Sg-1(L(w/r))]Agp} (3.5)

q>0

with g =2%44(29-). As for 2<p < oo, we have B)) , < L” (see [36]), then by using Bern-
stein inequalities (2.1), it follows

17130 <3101 {[10g(D), -1 (L(w/r)| Agp} I3
q>0
<3 2%9)|[4,(D), Sy 1 (L(w/r)|Agpll3s-

q>0
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Thanks to Lemmas 2.3 and 2.5, we find

1014 (44 (D), Sg—1(L(w/r))]Agp} e S 2% |2g |2 [[V LW /)26 | Agpll | oo
SIVZL@/Me2 18Pl oo Sllw/rll2 [ Agpll o

6—p

which leads to

[ Lsllze Sllw/rllc2llpll 5oy, -
6-p'2

By using the Hélder inequality and Bernstein’s inequalities (2.1) again, we show

HallZo + 1151170 D 22N A (L(w/))Sq-1plT0 + D 22 Ag(L(w/r))Ri;Sg-1pll7s

q>0 q>0
S 22 A (L(w/P) 170 (1Sg-1p[7 + [ Rij Sq-1pll7 )
q=0
Slwo/rll70 Y 272 (1Sg-1pl 7 +1RijSq-10ll7) Sllw/r 170 o7 m

q=>0
for 3<m, and in particular,

Mallze + 115l Le Slw /vl Lo ol o

To estimate I, using Bernstein’s inequalities (2.1) yields, VkeNU{-1},

ATl ze $2° Y I[Rij Ag(Lw/r))Agpl Lo

q=k—4
While

I[Rijs Aq(L(w/r))]Agpl Lr
SIAG(L(w/m)llzellAgpll | oo +118g(L(w/r))l|zoRijAgpll  on

B6—

S27w/rllzalAgpll | o

6—p

which follows from the embedding B , < L that

Mslle S leo/rllz2lplso,, -

6
6—p°
Let’s now turn to handle I7. In view of Lemma 2.5, we deduce that

101 Rij, Aq(L{w/rDIAgpllLe Skl so [VLw/T)l|zol|Agp]| 22,

where h(€) =& 554 ®(¢) and € D(R?). An application of the well-known Mikhlin-

Hormander Theorem shows that

|h(z)| S (1+]z))*, VzeR?,
which leads to zh EL% and then

1R, Ag(L(w/r)AgpllLr SIVPLw/r) 22l Agpllzz Sllw/rllzz [ Agpll o
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Therefore we get that

1llr < Y 0 Re, Ag(L(w /)] Agpllr S llw/rll 2ol 2
—1<¢<0

We directly estimate by the Holder inequality and Sobolev embeddings

1 sllzr S D 101 £8g (w/r)Rij Agpllze S11O1L(w /7)ol lpl] | oo

~1<¢<0

SIVOLLw/r)lczlpll e Sllw/rlleallpll oo

For Iy, as in (3.5), Ig:Zqzoal{[¢q(D),Sq_1(83A_1(w/r))]Aq(x1p)}, thanks to
Berstein’s inequalities (2.1), we write that

101{ [0 (D), Sq-1(0s A7 (w/r))]Aq(z10) | v
S 2H{[g(D), Sq-1(0sA7 (w /)] Ag (1)} 2

which follows from Lemmas 2.3 and 2.5 that

101{[24(D), Sq-1 (9327 (w /)] Ag (1)}l o
S22l 2227 VO AT w/r) e[| Ag (@10) | oe S llw/rllze | Ag(z1p)] Lo

Thus, we deduce

Hsllze <> 101{14(D),S—1 (0587 (w/r))Ag(@1p)} Lo S llwo/rllLollzipll e, -

q>0

Note that I19=01_,5,[Rij; Aq(03A~ Yw/rN]A,(x1p), without using the structure of
the commutator, one has Vke NU{-1}

1AkT1ollLr $2° ) [I[Rijs Ag (052~ (w/r))]Ag(w1p)l| o

q>k—4
<28 ) IIAq(azA1(w/7"))||m(||5q($10)Loo+||Riqu(xlp)lle)
q=k—4
$28 ) 27 w/rl|ee | Ag(21p) o
q>k—4

Hence, we infer

Holle $2° Y [Rij, Ag(@387H w/r))|Ag (210) 1 1r

q>k—4

st ) IIAq(33A‘1(w/T))IILv(IIAq(Jhp)Lw+IIRiqu($1p)lle>

q>k—4

Sllw/rllze Y- > 2B (@)l Sllw/rlizellziplp, -

k>—1g>k—4
While the continuity of the Riesz transform on L* for V1 < A < oo shows us that

11Rij: g (s A7 (w/r)]Ag (1) e S 1|8 (B2 (w/)) |0l Ag(@1p) | oo
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and then
[Tallze Sllw/rl[czllzpl] eo .
L&
Similarly, we may readily deduce
[a2llze + 1 Tusll e Slw/r[|e 210l L2n B, -
Therefore, we obtain

101 ([R5, o) e S llw/rllze (ol o + llollze +lz1pll L2nme. )

3.6
Fllo/rlize(lollon, +llollze +llanpll go). G
6—p’
We also can show that the same estimate of |02 ([R;j,v%]p)| L+ is true, and let us now turn
to estimate the term 93([R;j,v%]p) which has a different structure from 0 ([R;;,v%]p).
e Estimate of 93([Ri;,v%]p). We first have the decomposition

[\v]

—05([Rij,v*)p) =D Os(0k A~ (w/7)[Rijs k] p) +205([Rag, e p)

k=1
+203([Rijs A Raz(w/r)]p) + D 05([Rij, kA (w/r)] (wrp)
k=1
=I+I1I+1I1.

To estimate the first term I, we use the form
W w W
95(0kA 1(;)[Rij7$k]P)ZRsk(;)ijP-FakA 1(;)33£§jp

to give

2
171 <Y (€5 ol [Rus(w/r)l o +1[ 06D /1) | o105 LE | 0)
i=1
Sllw/rlleellpllzes +llw/rllc2lpll | co -

As the operator A~1R33 has the same properties as £=—20;3A72, then the estimates
of the terms II and I1I are similar to the ones of I, for 3 </<13. Hence, one finds

195([Regs0*10) | S o/l (loll o + e + 1121l z2nms )
o/l lollos,, | +lolle +leapll gs,)

D’

(3.7)

Combining (3.6) with (3.7) and (3.4) leads to (3.2), which concludes the proof of the
proposition. [

In order to bound ||$hPHL}(BgQ ) in Proposition 4.3 in Section 4, we need also to
estimate the commutator about the Littlewood-Paley operator A,.
PROPOSITION 3.3.

Under the assumptions in Proposition 3.2, there holds for every ¢ NU{—-1}

I1Ag,0-Vlpllze Sllw/rllzzllpll oo +llw/rllLellenpllLe +[lw/rl|Lellpl s (3.8)
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and

I[Agv-Vipllre Sllw/rllzza (lollcz +llpwnllze)- (3.9)

Proof. Since the velocity v is divergence-free, we rewrite [A4,v-V]p as the form

3
[Agv-Vp=> 0;[Agv]p=T+II+III.

j=1
For I, we decompose it into the following four terms:
1=01 (1, £0/r))0) + 01 (80, A B/ (w19)) — (Rus(/r)) 2291 (20.)

4

—{AT103(w/1)}2%(B1p1) (20 ) kp=) L1,

£=1

with £=—-2R13A7! and ¢ () =210(z) € S(R?).
Thanks to (2.3), Sobolev embeddings, and Lemma 2.3, we deduce

1 llee SIVE@/Dzellpll, e SIVEL@/)z2llpll oo S llw/rllzzlloll oo,

12l Le SIIVAT 03(w/r)||eo |lz1pll e Sllw/rlLel[z1p] Lo
and
23] » + [ 14| Lo
SRz (w/m)l[eo 22| (27) % pl e +1[AT 05 (w/r) || o 2° | (Prpr) (27 ) %l on

Sllw/rllzelleall g llollcs +llw/rlleall01eulle loll oo
Sllw/rllellpllzs +llw/rllzzllpll o -
Thus it follows
2o Sllw/rllzzllpll oo +llw/rlleellzipllee +llw/rllLellpll s
In the same way, we may get that
[ Il|ze Sllw/rllzzllpll oo +llw/rllLellezpllpe +llw/rllzellpllze.

Let’s turn to estimate I11. In fact, we first show

TIT=0{[Ag, VA ™ (w/1)] (2np)} + 205 {[Ag. A~ Ria(w0/r)]}
273V AL /1)) (2704 (27) %) + VA (w/r) (2% (Daipn) (27.) %)

4
= ZH[Z,
=1

with op(2) =2re(2).
Thanks to (2.3) and Sobolev embeddings, we find that

VTT o + 11T o S IIVEA /7)o fenpllios + VA Ras(eo/r) lzolloll | e

Sllw/rllellznplle +llw/rllzzlloll | e -
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The estimates of 115 and 1114 follow from Bernstein’s inequality (2.1) to show
[ LIIs]|Lr + [ T114]| e
S22 w/rlle2@n(27) % pllpes +[IVAAT w/T)l|Lo 2°||(Dpn) (27 ) pl | o0
Sllw/rllzellenll g llollzs +llw/rllc210snl[ o]l oo

Sllw/rlleellpllzs +llw/rllzz(lpll so -

This completes the proof of (3.8).
The second inequality (3.9) is in Proposition 3.2, [24], we omit its proof.
This finishes the proof of the proposition. 0

4. Proof of Theorem 1.1

4.1. A priori estimate
The existence and uniqueness of the solution to the system (1.1) was obtained

in [35], we just need to give some necessary a priori estimates for the proof of Theorem
1.1.
In the rest of this paper, we always denote

o1 (t) = Coexp(...exp(Cot?)...),
——
ktimes

where Cy depends on the involved norms of the initial data and its value may vary from
line to line up to some absolute constants and independent of u.

Let’s first recall the following proposition obtained (with a slight modification)
in [24].
PROPOSITION 4.1. (Propositions 4.1 and 4.2 of [24])

Let (uy,p,) be a smooth solution of (1.1), then
(1) for pe(1,4+00) , g€ [1,+00], and t eR, we have

ol L2 +IVpullzzre <2M1p°Nz and |lpullngepea <[1p°| Lo

(2) for p° € L?, u® € L?, and t R, we have

[ (8)] 22 < Co(1+1);
3) for p° € L? and teR_., we have

P +
_3
lpu ()l Lee < Co(1+t77%);
(4) for p° € L?, x,p° € L?, and t € R, we have
|znpullLee 2 + 1V (@hpu)ll L2 L2 < Co(1+47);
(5) for P € L™NL? with m>6, x,p° € L?, and t €R ., we have
[l2npu(t)l| < Colth +£74);

(6) for |xp|?p° € L?, p* € L?, and t Ry, we have

5
[z l?pull g2 + IV (|2 ? o)l L2 22 < Co(1+17);
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(7) for p° € LS, |xp|2p° € L?, p° € L?, and t e R, , we have
1
llza*pu(®)l]e < Co(t® +t72),
where constants Cy depend only on the norm of the initial data involved in the estimates,
and are independent of .

In order to get the further estimate about |||z4|?p,(t)||L=, Wwe recall the following
Nash-De Giorgi estimate for the convection-diffusion equation.
LEMMA 4.1 (Lemma A.1 in [24]).

Consider the equation

{ Of+ (V) f—Af=8,F+G, Vt>0,z€R3, 1)

f(0,2) = fo(x).

Let (p,q,p1,q1) €[1,+00]* and r € [2,+00], such that

There exists C >0 such that for every smooth divergence free vector field v, for every
Fe Ll L and for every feL”, the solution of (4.1) satisfies the estimate : for every
t€]0,T7,
_3 \/*1*(%+%)
f@®)|zoe <COA+E72 )| follLr +C(A+ VT NF Lz pa

2-(F+3)
+CA+VT MGz o - (4.2)

With this lemma in hand, we may deduce that
PROPOSITION 4.2.
Under the assumptions of Proposition 4.1, p° € L™ N L? with m > 6 and |xy|?p° € L?,
there exists a constant Cy >0 such that Vte R, ,,
1. for pe2,00],

|zhppllLe < Co(t +¢71), (4.3)

lza2pu(®)]z~ < Colt™ +11). (4.4)

Proof. The first inequality (4.3) can be immediately obtained by using the interpo-
lation inequality, Young’s inequality and Proposition 4.1.
For the second estimate (4.4), denoting g, :=|x3|?p, and f, :=zpp,, from the p, equa-
tion in (1.1), we know that g, satisfies the convection-diffusion equation

8tgu +uy- Vgu - Ag# =2uyp- fu - 2(81p# +82p#) —40, (:Elpu) —482(.%2[)“) +8pu-
Then by Lemma 4.1 and Proposition 4.1, we obtain
] 1 1
19u (Ol S A+ET) g N p2 + (L +7) || puryunll e 2) + (1482 [|ppall e (zoe)

3 1
+(1+t2)||$hpu”L§°(Lao)+(1+t4)”pMHLtoo(L2)
<Co(tT 4t 4t 3 +th 4 ed) <Gt 1),
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which completes the proof of the proposition. O
Let’s now turn to get the estimate of |[znpu||r1po_ |

PROPOSITION 4.3.
Under the assumption of Proposition 4.2, there holds Vte R

1=

t
znpullr o . <Co(1+43)+Co / (2 Dlog@+[| L s p)dr. (45)
) 0

Proof. Thanks to Proposition 4.1 and Bernstein inequalities (2.1), we find that

lenpullzime | / 3 )+ / S 18y (o) ()] [ dr

—1<q<N(r g>N(T)

§/ (ri4rd B J(2+N(7) dT+/ Z 22||A (hpu)(T)|| L2 dr

0 g>N(r)

for any positive fixed integer N(7) which will be determined later on. In order to control
the last sum in the above inequality, we localize in frequency the equation of f, =znp,

def
Oufutun - Vi—Afui=u,npu—2Vppy = E,

to give
Oufugtup Vfug—Afpug= —[Ag,up- v]fu +Fuq (4.6)

where f, 4 d:equfw qgeNU{-1}.
A standard energy estimate of the system (4.6) yields that V¢>0

t
—ct229 —c(t—T7)2%
[ frua@®)llze Sem? ||fu,q(0)||L2+/0€ D2 ([ Agyw - V) ful L2 + [ Fugllz2)dr

(4.7
To estimate the commutator in the right hand side, we can use Propositions 3.3 and 4.2
to give

118 g V1 (122 SNER Ol e llenl o (Dl e + el lzs)
SHEL @i+,

which shows us, when setting x(7) :=7%471, that

[T i) oliar

q>N(T)

w \92q
SOl +|IF, ||L1Lz+/ (=SS0 2“/ —e =2 () dr Y dir

g>N(T)

(4.8)

Moreover, thanks to Proposition 4.1, we immediately get

1Fullzire <VHIVoullz e + lwull e 2 | oull ype S1+82.
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Thus, from (4.8), one finds

t P
anpulliimo | S (1+2)+ / (vt 47 H)N(r)dr
5o, 0

/HiHLNL? 7'42 N 4 Z 2q2/ —c(r—7")2% /—sz)d

qg>N(T)
(4.9)

For the term Zq>N(T) 203 fOT e_c(T_T/)quT/_ZdT a change of variables shows us that

2297
2¢ ,_3 _ q ! g3
Z 2q2/ —e(r—r")2% 4d7'— Z 2%¢ or2? / eT ' Tadr
0

q>N(T) g>N(1)
2207 27 4.10
— Z 2qe—cr22q/ /——dT + Z 24¢ —07-22‘1/ eCT,T/—%dT/ ( )
q€B1(7) 0 g€ B2 (7) 0
= 1(r)+1I(7)
with

Ba(t)={ql¢>N(7) and 72?9 >1} and By(t)={g|¢> N(7) and 7221 <1}.
Using integration by parts, one can see

T)STTE Y 2mESrmigTENG, (4.11)
g>N(7)

While for the second term II(7), one finds

ST 202N N 9dagomiNO (o), (4.12)
4€Ba(7) 2-2a<r1

Hence, plugging (4.11) and (4.12) into (4.10) yields

Z 2q2/ —c(r—1")2% /_7d7_/<2 (7')(14_7-—%). (4.13)

qg>N (1)

Therefore, combining (4.13) with (4.9), we obtain

t
lnoulleiee, , S (1+6)+ / (P ) (N () 4242 o2 2N ) ar. (414)
’ 0
Choose N (1) in (4.14) such that

w
N(7) =2[logy (2+|="lresr2)];
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we have
9 ¢ 3 w
HthuHLngolSCO(l"‘tZ)"‘CO/ (T2+T_Z)10g(2+HTHHLgoLz)dT.
’ 0

This completes the proof of the proposition. O

Based on Propositions 4.3 and 3.2, we may get the control of ||w7”||L§oLz.
ProprosITION 4.4.

Under the assumptions in Proposition 4.1, let u® € L? be an axisymmetric vector field
such that WTO €L? and p° € L>NL™ for m>6, azisymmetric and such that |xp,|?p° € L?.
Then, we have for every t e R,

12 e 12 < 0 (8). (4.15)

Proof. Recall that the equation of the scalar component of the vorticity V xu, =
wyeg is given by
-

U
atwﬂ—i-uu-VwM—,uagwﬂszu— Py (4.16)
It follows that the evolution of the quantity “’7“ is governed by the equation

w Oy
(at+uN-V—Ma§)7“=—%. (4.17)

On the other hand, applying the operator %A‘l to the equation of the density yields

1. 0, 1.
(Ot u,-V)(-0,A " p) - Tp:_[;aTA LTI P (4.18)

Setting I'y, := “’T—"—&—%&A_lpm we infer from (4.17) and (4.18) that the new unknown
I',, satisfies

(D¢ +up -V —pd)T, = —[%&A‘WH Vpu— MQ?%&AAPN- (4.19)
The basic L? energy estimate of (4.19) yields

Tl ge 22 + 121102l 2 2

Il 4100 A e Vol 411000, plzse (4:20)

Sz + 00,8 - Dl e + 1 10:pulr e

From Proposition 3.2, we estimate the commutator in (4.20) to get

T

A weVipul ez Slwn/rllez (loall 2 + 1V pullz + louznll2asg, ),
which along with (4.20) implies

1
ITullgerz +p2 10Tl L2 2
e e (4.21)

1
STz +llwn/rllze (loullz + 1Vl 2 +lppwnllznpe, ) + 12 [102ppll 212
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On the other hand, applying Proposition 4.1 shows us that
9
lpull ez +1IVoullczr2 SN0 2y llpuwnllirre St+7, (4.22)
which follows

zwu

|| HL°°L2+:“|| L2z
1. ., 1. .,
S||Fu\|L§°L2+M||azru||LgL2+H;arA ﬂu||L;>°L2+M||;5rA 0:pullLzr2
SITullzgere +ul|0:Lullzzre + lppllnge e + w02 ppll L2 22,
and then

0wy,

w
1= lege 2+l =Ml 222 SITullge 2 + pl10=Tll e + 116l 2 (4.23)
Combining (4.21) with (4.22) and (4.23) implies

(‘3sz

|| |‘L°°L2+M|| ||L2L2
S HFOHL2 +|1p° ||L2 Hlwu/rllzz (loullz + 1 Voulle +1lpuznll 2z, ),

which, from the Gronwall inequality, gives that

=2 llpere 4l o “HL2L2<C(|IFOIIL2+HP Iz2)

C(HpuHL1L2+HV/’;LHL1L2+"pumhllLl(LZQBO ))
i i i 00,1

Therefore, an application of Proposition 4.1 yields

w ow Co(VE+ti +
12 e Al 22 g2 S OITO o 0 ) T T o)

)

which along with Proposition 4.3 gives rise to

0w 9
e e o P o P

¢
xexp{Co/ 2T 4)log(2+\| L oo p2)dr},
0
and then

t
log(2+] 2 |\L°°L2)<10g00+00(1+754)+00/(T 1) log(2-+ 2 e 2
0

(4.24)
Therefore, applying the Gronwall inequality to (4.24) gives the desired estimate. O

PROPOSITION 4.5.
Under the assumptions in Proposition 4.1, let g<so<3, 3<p<+oo satisfy 0<

%— % <50, u’ € L? be an azisymmetric vector field without swirl such that “’70 cL’nLr

and p° € B‘;f’l NL™, for m>6, azisymmetric and such that |xy|>p° € L?. Then, we have
for every te R,

T

'LL
II—“HLoom = lleer+ IIiIILMLS v lloullzips | <¢2(t) (4.25)
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and

llw (t) || oo < p3(1). (4.26)

Proof. Let’s first give some estimates of I';, in the L? framework. Multiplying the
I, equation (4.19) by |T',|P72T', and then integrating it over R? yields that

1 d » 1 B
prllF +MII3ZIF;L|2HQL2§H[;8TA 1

V]PMHLPHF#”IE;l
1 _ _
[ BCONT I e
R3 T
1 _ _ 1 _ P p_
S A e Vgl [ 105087 g, 0.1, T, 15

Thanks to Héder and Young inequalities, we infer that

I+l V1T 13 S0 A e Vol Tl IVl 2l Tl 52
and then deduce that

Tyl 2ge Lo 5||FOHL”+H[%aTA_l?uu'v]pNHL}LP+U%||Vpu||LfLP- (4.27)
In view of the definition of I';,,

19 e o < Tl + 170 A pull oo S Ilzons + ol oo

which along with (4.27) implies
w 1 _ 1
1 e < Co( IO A Vgl 43 190 l10s). (429

Let’s now handle the estimate of H[%@TA_l,uH-V]pMHL%LP. From Proposition 3.2, we
have

O -
AT - Vipullee Sllwp/rllee (lallzos + 1o

|L6+Hpuxh”L2mBgol)

’ (4.29)

+||wu/7“||L2(||puHBO5, +lpullzz +lppznll Gfp)
2P o L6-p

6—p°
In the second term of the right hand side in (4.29), applying Propositions 4.1, 4.2, and

4.4 gives rise to

5 _3
o /rllsz (loul oy, +loullze +llouznll | oo ) S62(0)(loullpn,, +1+t5+71),

6—p’ 62

which follows

w
SV s, ol ol s, 5 [ 62 loulss,dr+6a(0)
6-p2 6—p’
(4.30)
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It remains the control of the Besov norm ||pu||B°6p . In fact, similar to the proof of
6-p2

(4.7), a standard energy estimate in local frequency of the p, equation shows us that
Yqg>0

t
—ct229 —c(t—7)2%
18P, (t)]| 22 Se™ IIqu0||L2+/ e[ Ag e Vpuledr, (4.31)
0
which follows, from Propositions 3.3, 4.1 and 4.4, that
lpullz s 5||p0||L2(1+t)+sgp||[Aqauu'V]PMHL}L?

t
§||p0||Lz(1+t)+/0 lwu/Tll2lpullLs + 2oyl L) dT (4.32)
t
Sl () + [ oar) (747 dr Soa(e).
0
As a consequence, we get from (4.30) that

t
/0 IIWH/THLz(IIpuIIBZG%pJ+|Ipu\|L2+llputhIL%)dT

o)1+ Ipullsgmo,, S o1+ oullzypy ) Soa(t)

6-p’

(4.33)

An application of (4.31) shows us that

||puHchB§o;2 S ||POHBSOI*2 +22(5073)q||[Aq7uu ’ v]PuHL%B
q

N|=

<1A°

t
B2t (/0 (sup||[Aq,upu-V]pyl ‘LZ)ZdT)
= q

Hence, thanks to (3.9), (4.15), Proposition 4.1, and the interpolation inequality, we find

1ol 2 e S0 o+ oo/l e s (lplzzzs + ol o)
5y Wa 363 | Wa | 302D Wi 3G (4.34)
SI+A+e)=llpmre 15 IEre ST+l = lEre-

On the other hand, localizing the p,, equation in frequency in the LP framework
yields for e NU{-1}

1d _ _
pdt | Agpoulln /RS AgApulDgppl? 2qu“dx:—/Rs[Aq,uMV]pMquMp 2quudx-
(4.35)
By using the inequality in [12]
22| A fI5,, if ¢>0
= [ Aafisggra, e Sl AT a0
R3 0, if ¢g=-1,
we get from (4.35) that
HAun”L‘;"LP+022q”AunHL§LPSHAqPOHLP+C||[Aq,uu’V]Pu||L%LP (Vg>0), (4.36)

1A 1pull o < NA_1 Ao+ CllIA 1w Vol 1o
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Therefore, thanks to (4.33) and Propositions 3.3, 4.1 and 4.4, one can obtain from (4.36)
that

t
loullzs g2 §¢z(t)+/ lw/rllzs (l|znpllLe +Ilollzs)- (4.37)
p,00 0

By using the interpolation inequality, (4.32) and (4.34), we deduce that

||VPMHL$LPA<J||PMHZQQBO ||p#||Lle <||PMHL°CBao 2||Pu||LlB2

_pP
S ¢a(t) + 2 ()] “Ili(ffcfﬁ-

(NI

(4.38)

Inserting (4.29), (4.33) and (4.38) into (4.28) yields
|| L) e o S 62(8) + o ()] 22 ||Z(<>’1L213
/ IIJIILP (loullzes +lloullze +llpuznll2ame, | +llznpllLe +|lpllLe)dr
and then follows from Young’s inequality that

II*IILWLP S ¢2(t)

/Ilillu lpullzer +lpullze +llpuznllenme, +llznplle +|lpllLs)dr.

(4.39)
Thanks to Propositions 4.1, 4.3 and 4.4, it shows
ol s +llowl e +llpunllze +llznpll o +llpll e < Co(tt +17%),
and then follows from (4.39) that
|| Sl re S é2(t) / ||* )l (Co(rt+771) +[Janpu(7)l|pe, ,)dr.  (4.40)
Applying Gronwall’s inequality to (4.40) leads to
12 01 S B2 exp{Co14+7% + llenpullry o, )}-
which follows from (4.15) and (4.5) that
15 1o 0 < 2(0) (441)
and then
IVoullizir 020, loullzypn S 2(0) (4.42)

where we have used the mequahty (4.37).
Thanks to the fact || i Lo S

ra1 in [2], we have

2Ep_g) ” ”W

u’
1=l < H*”Hm1 S| 15
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then a consequence of (4.15) and (4.41) gives

T

122l < 02(0). (4.43)

From the maximum principle for the equation (4.16), we obtain that

t u”
[lwu ()]l Lo < IIwOHL<>c+/O ==z o () [ dr + [V ol i 1o,

which follows from the Gronwall inequality that
“p L
ol < (1l +IVpullgem)e ™40 < (Pl +lpall | g )el ™o,
tp,1

By combining Lemma 2.2 and inequalities (4.42) and (4.43), we deduce

u'r‘
low (Ol < Co(l+llpullzrps ) explll=llrie} S 8s(0).

This ends the proof of the proposition. O

4.2. Proof of Theorem 1.1

Let’s now achieve the proof of Theorem 1.1 by giving the persistence of the initial
regularity uniformly on the viscosity.

Proof. (Proof of Theorem 1.1.) By a standard energy estimate for the system
(1.1), we have

0 ‘ 2 2 3
[l oo g« S llu ||Hs+||P||z%Hs+/O (> 2%)|[Ag,u- VI3 2dr) 2 (4.44)

q

and

oull s grems 190l 22

t 1
S a2+ 1A 1ppullpi e +/O (D 227 D|[Ag,w - Vpy|F2dr) 2.

q

(4.45)

We recall the proof of Lemma 2.100 in [5] to estimate commutators in (4.45)
1
(222qs‘|[Aqvuu'V]UMH%?dT) * SIVupllze lupllae
q

and

(322D )[A w, - VIpull2e S IVl 2= |0l ars 2 + 11Vl o g o2
q

Hence, thanks to [[A_1p,| 1112 St]|p°] L2, one can show from (4.44) and (4.45) that
pwll oo ez +1oull 73 gre S NPl zra-2 +llp") 2

t
+/0 (Nl o ol rre=2 + 1V oyl oe (ltll 2 + 1wl 122))
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and then

HPMHEgoHs—? + ||pu||E%Hs + HU#HEthS

t
SO Wars -2+t p°) 2 + |7+ +/0 IVpullLoellwpll p2dr

t t
+/ HVUMIILwIIpHIIHs—H/ IVl oo + IVl o) | 11+
0 0

Then, an application of the Gronwall inequality gives rise to
1ol Zee ra—z + ol 22 prs + Nl 7o g

t
c(||V oo +||V oo
S (16 o2 + 10 2 + [0 2+ + / IV pull ol e« el o FIN Pl ),
0

(4.46)
Note that, from Proposition 4.1 and inequality (4.42), we have
IV0ulli~ S ol s _ S2(0)
and then
t
[ 19l adr <60,
0
which along with (4.46) implies
ClIVupllp1
HpM”ZgoHs—’z+HPM”E%HS+‘|uu||it°°Hs < ¢s(t)e L, (4.47)

In view of the classical logarithmic Sobolev embedding inequality

5
190l S ewallze + ol Togle-+ i) (75> 2),

we deduce from the inequality (4.47) and Proposition 4.5 that Vi €R

t
IV )= <0501+ [ [, 1r)
It follows from Gronwall inequality that Vi€ R,

IV (@) e < da(t).

Plugging this estimate into (4.47) gives

1ol e 192 23 1o+t e e < 8500,
This ends the proof of the theorem. O

5. The Rate Convergence With Theorem 1.1 in hand, we are now in a position
to get the convergence rate of the solution of the Navier-Stokes-Boussinesq equations
(1.1) to the one of the Euler-Boussinesq equations (1.4).

Proof. (Proof of Theorem 1.2.) Let (p,,uu,p,) and (p,u,p) be solutions of
(1.1) and (1.4) respectively, and denote

0u=pu=p; Zpi=up—u and  P=p,—p,
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we can easily check that (o,,2,,P,) satisfies the system

Owou+uu-Vo,—No,=—2,Vp,  (t,r)e Ry xR
Ozp+uu -V, +VP,=pdiu,+oue. —z,-Vu,

divz, =0,

21— =0, Opji= =0

Similar to inequalities (4.44) and (4.45), the energy estimate in localized frequency
shows us that

12ull poe gra—2 Slleull gy a2 Ftpllupllnge e + 120 Vul| Ly e
t t

! 2q(s—2) 2 3 (51)
+ ; (22 ||[Aq,u#~V]z#HL2dT)
q
and
loullzoe pre—z 110l g1 e SIA-10ull 212 + 1120 Vol Ly pro-2
t 1 5.2
+ [ (A Felear) Y
0
q
As s> g, according to Bony’s decomposition and Bernstein’s inequality, we get
12 Vullge—2 S 2ullme—2 [ Vull e + |20 3 [ Vel 5 2 (53)
Slzullme-2llull g
and for some A>3 (with H572< L)
2 Vol -2 Slzull a2 1V ol Lo + 2l 22 [ Vol o2
=z (5.4)
Sleullzzs—= (IVolle +lloll vz -2)-
Recall the proof of Lemma 2.100, [5], we have
(ZQQq(S_Q)H[Aq,Uu'V]ZMH%QCZT)i
q
IVl e if 5 <}
IVl e llzull -2+ [ Vaulle lunl gz if >3,
then Vs> %, we have
1
(S22 (A gy V2 3adr) S gl . (55)

q

Similarly, one can show

(D227 2N w- VieulTe S Nyl | gyl e (5.6)

q
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Plugging (5.3-5.6) into (5.1) and (5.2), we obtain from Minkowski’s inequality and the
fact |A—1oullrirz Sllopllzrpre-—2, that

t
Vol e s+l o sy Sz + [ Nl (14 ) r

t
+/0 Izl zre=2 (lull 2= + 1V pll oo +llpllov 1 )dr,
which follows from the Gronwall inequality that

||Zu||ZtooHsf2 + HIQuHZgoHsf2 + HQMHE}HS
< Ctuluplle e exp{Ct+tluull e me +tllull e +VollLrre + Mol fovg-2)}-
(5.7)

Thanks to the fact that s >% and A>3, we get from Remark 1.1 that
tullzeems 1Vl oo +lloll Ly gor g Stllulle s +llpllz e < 05(2),
which along with (1.6) implies
ez sre—s + el z s +leull s e < ()6 (D),

that is, (1.7) holds. This achieves the proof of the theorem. O
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