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Abstract. Consideration herein is the inviscid limit of the 3-D incompressible axisymmetric
Navier-Stokes-Boussinesq system with partial viscosity. We obtain uniform estimates of the solutions
of this system with respect to the viscosity. We then provide a strong convergence result in the Hs−2

norm of the viscous solutions of this Navier-Stokes-Boussinesq system to the one of Euler-Boussinesq
equations.
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1. Introduction In this paper we deal with the 3-D incompressible anisotropic
Navier-Stokes-Boussinesq equations

∂tρµ+uµ ·∇ρµ−∆ρµ= 0, (t,x)∈ R+×R3

∂tuµ+uµ ·∇uµ−µ∂2
zuµ+∇pµ=ρµez,

div uµ= 0,

uµ|t=0 =u0, ρµ|t=0 =ρ0.

(1.1)

These equations include the temperature ρµ (or the density in the modeling of geophys-
ical fluids), the solenoidal velocity field uµ= (uµ,1,uµ,2,uµ,3)T , and the fluid pressure
pµ. The term ρµez with ez = (0,0,1)T takes into account the influence of the gravity
and the stratification on the notion of the fluid. And the partial viscosity coefficient µ
is a positive constant. Note that when the initial density ρ0 is identically a nonnega-
tive constant, the system (1.1) reduces, in general, to the following 3-D incompressible
anisotropic Navier-Stokes system

∂tu+u ·∇u−ν∆hu−µ∂2
zu+∇p= 0 in R+×R3,

divu= 0,

u|t=0 =u0,

(1.2)

where the usual Laplacian in the classical Navier-Stokes equations is substituted by the
anisotropic Laplacian ν∆h+µ∂2

z with ν, µ≥0, which appears in geophysical fluids (see
for instance [9]). The system (1.2) has been extensively studied by many mathematicians
recently (see [8], [26], [33], [10], [37], [18], [4] etc.).

The system (1.1) is an anisotropic version of the classical n-D incompressible Navier-
Stokes-Boussinesq equations (n= 2, 3)

∂tρ+u ·∇ρ−κ∆ρ= 0, (t,x)∈ R+×Rn

∂tu+u ·∇u−µ∆u+∇p=ρez,

div u= 0,

u|t=0 =u0, ρ|t=0 =ρ0,

(1.3)
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2 Inviscid limit

which are widely used to model the dynamics of the atmosphere or the ocean [29], and
arise from the density dependent fluid equations by using the Boussinesq approxima-
tion which consists in neglecting the density dependence in all the terms but the one
involving the gravity. This Boussinesq approximation can be rigorously justified from
compressible fluid equations by a simultaneous low Mach number/Froude number limit
(see [15]).

In two dimensional, the standard energy method enables us to establish the global
existence of regular solutions of (1.3) for the case where µ and κ are positive constants.
But, for the case µ=κ= 0, the global well-posedness of (1.3) for some non constant ρ0

is still a challenging open problem. For the case µ>0, κ= 0, or κ>0, µ≥0, the global
well-posedness of (1.3) was independently obtained [1, 7, 19, 20, 25], see also [21, 22] for
the global well-posedness in the critical spaces.

In three dimensional, R. Danchin and M. Paicu [14] proved the global existence
of Leray weak solution of the system (1.3) and its global well-posedness with small
initial data, and also obtained an existence and uniqueness results for small initial data
belonging to some critical Lorentz spaces in [13]. As the outstanding open problem in
the 3-D incompressible Navier-Stokes equations, there are few results about the global
well-posedness result of (1.3) for large initial data in 3-D.

Many mathematicians devoted to the study of some special large initial data which
may globally generate the smooth solution of the 3-D incompressible Navier-Stokes
or Euler systems. There is an interesting case of the global well-posedness result for
both the three-dimensional Navier-Stokes and Euler systems (see [34]) corresponding to
large initial data but with special geometry, called axisymmetric without swirl, which
means that they have, in cylindrical coordinates (er, eθ, ez), the following structure:
v(t,x) =vr(t,r,z)er+vz(t,r,z)ez. Note that we assume that the velocity is invariant by
rotation around the vertical axis (axisymmetric flow) and that the angular component
vθ of the vector field v is identically zero (without swirl).

Inspired by this, more recent works devoted to the study of the three-dimensional
axisymmetric Boussinesq system for different viscosities, here the velocity field v is
axisymmetric without swirl, and the axisymmetric scalar temperature ρ means ρ(t,x) =
ρ(t,r,z) independent of the angle θ in cylindrical coordinates. In [23], H. Abidi, T.
Hmidi and S. Keraani proved the global well-posedness for the Navier-Stokes-Boussinesq
system (1.3) with µ>0 and κ= 0 with smooth axisymmetric initial data without swirl.
In [30,31] a global well-posedness of (1.3) with axisymmetric initial data without swirl
was established in the case when the viscosity only occurs in the horizontal direction.
For the case µ= 0 and κ>0, the system (1.3) reduces to the 3-D incompressible Euler-
Boussinesq system 

∂tρ+u ·∇ρ−∆ρ= 0, (t,x)∈ R+×R3

∂tu+u ·∇u+∇p=ρez,

div u= 0,

u|t=0 =u0, ρ|t=0 =ρ0,

(1.4)

which couples the Euler equation with a transport-diffusion equation governing the
temperature. Recently, under the assumptions that s> 5

2 , u0∈Hs is an axisymmetric
divergence free vector field without swirl, and ρ0 is an axisymmetric function belonging
to Hs−2∩Lm with m>6 and such that r2ρ0∈L2, T. Hmidi and F. Rousset [24] proved
the global well-posedness for the three-dimensional Euler-Boussinesq system (1.4). In
[35], S. Sokrani investigated the global well-posedness of the 3-D incompressible Navier-
Stokes-Boussinesq system with partial viscosity and axisymmetric data without swirl.
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In this paper we study the persistence of the Sobolev regularity Hs with s> 5
2 for

the 3-D incompressible anisotropic Navier-Stokes-Boussinesq equations (1.1) uniformly
with respect to the viscosity µ, and then investigate its inviscid limit problem (towards
to (1.4) as the partial viscosity coefficient µ goes to zero).

Our main results are as follows.
Theorem 1.1 (Uniform boundedness of the velocity).

Let µ∈ (0,1], s> 5
2 , u

0∈Hs be an axisymmetric divergence free vector field without
swirl and let ρ0 be an axisymmetric function belonging to Hs−2∩Lm with m>6 and
such that r2ρ0∈L2. Then there exists a unique global solution (uµ,ρµ) to the system
(1.1) satisfying

(uµ,ρµ)∈C(R+;Hs)×
(
C(R+;Hs−2∩Lm)∩ L̃1

loc(R+;Hs)

)
, r2ρµ∈C(R+;L2). (1.5)

Moreover, there holds

‖ρµ‖L̃∞t Hs−2 +‖ρµ‖L̃1
tH

s +‖uµ‖L̃∞t Hs ≤φ5(t), (1.6)

with

φk(t) =C0 exp(...exp︸ ︷︷ ︸
k times

(C0t
3)...),

where C0 depends only on the involved norms of the initial data and not on the viscosity
µ.

The proof relies on the uniform estimate of the Lipschitz norm of the velocity. For
this purpose we use the method developed in [24] for the inviscid case. However, the
situation in the viscous case is more complicated because of the appearance of dissipative
term. We especially have to check that it doesn’t undermine some geometric properties
of the vorticity.
Remark 1.1.

Under the assumptions in Theorem 1.1, there exists a unique global solution (u,ρ)
to the system (1.4) satisfying (1.5) and (1.6).

In effect, in view of the proof of (1.6), all the estimates in it are independent of the
viscosity coefficient µ, so we may repeat the argument in the proof of (1.6) in Theorem
1.1 to get the same estimates for the solution of the system (1.4).

Our second main result deals with the inviscid limit.
Theorem 1.2 (Rate convergence).

Let (ρµ,uµ) and (ρ,u) be respectively the solution of the Navier-Stokes-Boussinesq
equations (1.1) and Euler-Boussinesq systems (1.4) with the same initial data (ρ0,u0)
satisfying the conditions of Theorem 1.1. Then we have the rate of convergence

‖uµ−u‖L̃∞t Hs−2 +‖ρµ−ρ‖L̃∞t Hs−2 +‖ρµ−ρ‖L̃1
tH

s ≤ (µt)φ6(t). (1.7)

The proofs of Theorems 1.1 and 1.2 are completed in Sections 4-5. We now present
a summary of the principal difficulties we encounter in our analysis as well as a sketch
of the key ideas used in our proof.

Note that in view of the proof for the 3-D axisymmetric Euler equations, the crucial
part of the proof of Theorems 1.1 is to get an a priori estimate of ωµ in L∞, where ωµ
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is the angular component, the only component, of the vorticity curluµ of the velocity
field uµ, i.e., ∇×uµ=ωµeθ, which satisfies

∇∂tωµ+uµ ·∇ωµ−µ∂2
zωµ=−∂rρµ+

urµ
r
ωµ. (1.8)

In view of the method in [3], the quantity ‖ωµ(t)‖L∞ may be bounded if we control the

quantity ‖u
r
µ

r ‖L∞ , which conversely can be bounded by the Lorentz norm ‖ωµr ‖L3,1 .
In effect, according to (1.8), the evolution of the quantity

ωµ
r is governed by the

equation

(∂t+uµ ·∇−µ∂2
z )
ωµ
r

=−1

r
∂rρµ. (1.9)

As mentioned in [24], the first main difficulty is to find some strong a priori estimates
on ρµ to control the forcing term − 1

r∂rρµ in the right-hand side of (1.9), which can be
thought as a Laplacian of ρµ because of the appearance of the the singularity 1

r on the
axis r= 0, and thus one may try to use smoothing effects of the diffusion system of ρµ to
control it. Unfortunately, because of the lack of the complete Laplacian of the velocity
uµ, hen we want to use this argument to deal with the advection term in the system, it is
not sufficient to obtain an estimate for 1

r∂rρµ in L1
loc(L

p) by considering the convection
term as a source term and by using the maximal smoothing effect of the heat equation.
To handle it, we turn to use more carefully the structure of the coupling between the
two equations of (1.1) in order to find suitable a priori estimates for (uµ, ρµ). In deed,
in order to cancel the source term of the right hand side in (1.9), we apply the operator
∂r
r ∆−1 to the equation of the density to show

(∂t+uµ ·∇)(
1

r
∂r∆

−1ρµ) =
1

r
∂rρµ− [

1

r
∂r∆

−1,uµ ·∇]ρµ, (1.10)

where the term 1
r∂rρµ appears in the right hand side of (1.10) with the opposite sign of

the one in the right hand side of (1.9). Motivated by [24], we introduce a good unknow
Γµ as

Γµ :=
ωµ
r

+
∂r
r

∆−1ρµ,

which, thanks to (1.9) and (1.10), satisfies that

∂tΓµ+uµ ·∇Γµ−µ∂2
zΓµ=−[

∂r
r

∆−1,uµ ·∇]ρµ−µ∂2
z

(∂r
r

∆−1ρµ
)
, (1.11)

where the commutator term [∂rr ∆−1,uµ ·∇]ρµ= ∂r
r ∆−1(uµ ·∇ρµ)−uµ ·∇(∂rr ∆−1ρµ).

Thus the basic energy estimate of the equation (1.11) gives us that for every p∈ (1,+∞)

‖Γµ(t)‖Lp .‖Γ0‖Lp +‖[∂r
r

∆−1,uµ ·∇]ρµ‖L1
t (L

p) +µ‖∂zρµ‖L2
t (L

p). (1.12)

Compared with the estimate of Γµ in [24] about the axisymmetric Euler-Boussinesq
equations (where the control of ‖Γµ‖L3,1 can be obtained directly by using the interpo-
lation), the addition term µ‖∂zρµ‖L2

t (L
p) in (1.12) can not, in general, give the estimate

of µ‖∂zρµ‖L2
t (L

3,1) according to Lemma 2.4, more precisely, L2
t ((L

2,Lp](θ,1)) can not be
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embedded in
[
L2
t (L

2),L2
t (L

p)
]
(θ,1)

for any p>3. For this reason, we do not directly

estimate ‖Γµ‖L3,1 and then ‖ωµr ‖L3,1 but use the interpolation inequality to bound

‖Γµ‖L3,1 .‖Γµ‖
2(p−3)
3(p−2)

L2 ‖Γµ‖
p

3(p−2)

Lp for some p>3. (1.13)

Note that Hs−2(R3) ↪→L2∩Lp(R3) for s> 5
2 and some 3<p near 3, where ‖Γµ‖L2 and

‖Γµ‖Lp are controlled by (1.12), we may achieve (1.13) from the initial data viewpoint
since u0∈Hs and ρ0∈Hs−2∩Lm with m>6 and r2ρ0∈L2. In this process, the com-

plicated commutator estimate ‖[∂r∆−1

r ,vµ ·∇]ρµ‖L1
t (L

p) will be treated more carefully.
For this, we give Proposition 3.2 in Section 3, and then deduce (1.6). In order to prove
Theorem 1.2, we use the uniform bounds of the velocity in Hs combined with some
smoothing effects on the viscosity vorticity, which will be done in the last section.

The rest of the paper is organized as follows. In Section 2 we recall some basic
ingredients of Littlwood-Paley theory. Following basic definitions above, in Section 3,
we derive some qualitative and analytic properties of the flow associated to an axisym-
metric vector field and an axisymmetric scalar function. In Section 4 we first give some
necessary global a priori estimates, and then prove Theorems 1.1. The proof of Theorem
1.2 is completed in Section 5.

Let us complete this section with the notations we are going to use in this context.

Notations: Let A,B be two operators, we denote [A,B] =AB−BA, the commutator
between A and B. For a. b, we mean that there is a uniform constant C, which may
be different on different lines, such that a≤Cb and C0 denotes a positive constant
depending on the initial data only.

For X a Banach space and I an interval of R, we denote by C(I;X) the set of
continuous functions on I with values in X, and by Cb(I;X) the subset of bounded
functions of C(I;X). For q∈ [1,+∞], the notation Lq(I;X) stands for the set of mea-
surable functions on I with values in X, such that t 7−→‖f(t)‖X belongs to Lq(I).
We also denote vh= (v1,v2)T the horizontal components of the vector field v, and
x= (xh,x3)T ∈R3 with xh= (x1,x2)T . The operator Rij (i, j= 1, 2, 3) means the Riesz
transform: Rij =∂i∂j∆

−1.

2. Littlewood-Paley analysis and Lorentz spaces The proof of Theorem
1.1 requires Littlewood-Paley decomposition. Let us briefly explain how it may be
built in the case x∈R3 (see e.g. [5]). Let ϕ be a smooth function supported in the

annulus C def
= {ξ∈R3, 3

4 ≤|ξ|≤
8
3} and χ(ξ) be a smooth function supported in the ball

B def
= {ξ∈R3, |ξ|≤ 4

3} such that∑
j∈Z

ϕ(2−jξ) = 1 for ξ 6= 0 and χ(ξ)+
∑
q≥0

ϕ(2−qξ) = 1 for all ξ∈R3.

Then for u∈S ′(R3), we set

∀ q∈N, ∆qu
def
= ϕ(2−qD)u, ∆−1u

def
= χ(D)u and Squ

def
=

∑
−1≤q′≤q−1

∆q′u,

we have the formal Littlewood-Paley decomposition

u=
∑
q≥−1

∆qu ∀u∈S ′(R3).
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Moreover, the Littlewood-Paley decomposition satisfies the property of almost orthog-
onality:

∆j∆ku≡0 if |j−k|≥2 and ∆j(Sk−1u∆ku)≡0 if |j−k|≥5.

We recall now the definition of inhomogeneous Besov spaces and Bernstein type
inequalities from [5].
Definition 2.1 (Definition 2.15 of [5]).

Let (p,r)∈ [1,+∞]2, s∈R and u∈S ′(R3), we set

‖u‖Bsp,r
def
=
(

2js‖∆ju‖Lp
)
`r
.

We define Bsp,r(R3)
def
=
{
u∈S ′(R3)

∣∣‖u‖Bsp,r <∞}.
For the convenience of the reader, in what follows, we recall some basic facts on

Littlewood-Paley theory, one may check [5] for more details.
Lemma 2.1 ( Bernstein inequalities, [5]).

Let B be a ball and C an annulus of R3. A constant C exists so that for any positive
real number δ, any non-negative integer k, any smooth homogeneous function σ of degree
m, and any couple of real numbers (a, b) with b≥a≥1, there hold

Supp û⊂ δB⇒ sup
|α|=k

‖∂αu‖Lb ≤Ck+1δk+N( 1
a−

1
b )‖u‖La ,

Supp û⊂ δC⇒C−1−kδk‖u‖La ≤ sup
|α|=k

‖∂αu‖La ≤C1+kδk‖u‖La ,

Supp û⊂ δC⇒‖σ(D)u‖Lb ≤Cσ,mδm+N( 1
a−

1
b )‖u‖La .

(2.1)

We also recall Bony’s decomposition from [6]:

uv=Tuv+T ′vu=Tuv+Tvu+R(u,v),

where

Tuv
def
=
∑
j∈Z

Sj−1u∆jv, T ′vu
def
=
∑
j∈Z

Sj+2v∆ju,

R(u,v)
def
=
∑
j∈Z

∆ju∆̃jv with ∆̃jv
def
=

∑
|j′−j|≤1

∆j′v.

In order to obtain a better description of the regularizing effect of the transport-diffusion
equation, we need to use Chemin-Lerner type spaces L̃λT (Bsp,r(R3)) from [5].
Definition 2.2.

Let (r,λ,p)∈ [1,+∞]3 and T ∈ (0,+∞]. We define L̃λT (Bspr(Rd)) the space of all
function u satisfying

‖u‖L̃λT (Bsp,r)

def
=
( ∑
j≥−1

2jrs
(∫ T

0

‖∆j u(t)‖λLp dt
) r
λ
) 1
r

<∞.

with the usual change if r=∞. For short, we just denote this space by L̃λT (Bsp,r).
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The relationships between these spaces are detailed in the following lemma, which
is a direct consequence of the Minkowski inequalities.
Lemma 2.2.

Let s∈R,ε>0, r≥1 and
(
p1,p2

)
∈ [1,∞]2. Then we have the following embeddings

LrTB
s
p1,p2 ↪→ L̃rTB

s
p1,p2 ↪→LrTB

s−ε
p1,p2 , if r≤p2,

LrTB
s+ε
p1,p2 ↪→ L̃rTB

s
p1,p2 ↪→LrTB

s
p1,p2 , if r≥p2.

To prove Theorem 1.1, we also need to use Lorentz space Lp,q(R3). For the conve-
nience of the readers, we recall some basic facts on Lp,q(R3) from [17,27,32]:
Definition 2.3 (Definition 1.4.6 of [17]).

For a measurable function f on R3, we define its non-increasing rearrangement by

f∗(t)
def
= inf

{
s>0, µ

(
{x, |f(x)|>s}

)
≤ t
}
,

where µ denotes the usual Lebesgue measure. For (p,q)∈ [1,+∞]2, the Lorentz space
Lp,q(R3) is the set of functions f such that ‖f‖Lp,q <∞, with

‖f‖Lp,q
def
=


(∫ ∞

0

(
t
1
p f∗(t)

)q dt
t

) 1
q

, for 1≤ q<∞

sup
t>0

t
1
p f∗(t), for q=∞.

We remark that Lorentz spaces can also be defined by real interpolation from
Lebesgue spaces (see for instance Definition 2.3 of [27]):

(Lp0 ,Lp1)(β,q) =Lp,q,

where 1≤p0<p<p1≤∞, β satisfies 1
p = 1−β

p0
+ β
p1

and 1≤ q≤∞.
To establish some functional inequalities involving Lorentz spaces the following

classical calculus will be very useful.
Lemma 2.3 (see pages 18-20 of [27]).

Let 1<p<∞ and 1≤ q≤∞, we have the following assertions.
• For the Riesz transform Rij =∂i∂j∆

−1, i, j= 1, 2, there holds

‖Rij f‖Lp,q .‖f‖Lp,q .

• If 1
p = 1

p1
+ 1
p2

and 1
q = 1

q1
+ 1
q2
, then

‖fg‖Lp,q .‖f‖Lp1,q1 ‖g‖Lp2,q2 .

• If 1<p<∞, 1
p +1 = 1

p1
+ 1
p2

and 1
q = 1

q1
+ 1
q2
, then

‖f ∗g‖Lp,q .‖f‖Lp1,q1 ‖g‖Lp2,q2 ,

for p=∞, and 1
q1

+ 1
q2

= 1, then

‖f ∗g‖L∞ .‖f‖Lp1,q1‖g‖Lp2,q2 .
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• For 1≤p≤∞ and 1≤ q1≤ q2≤∞, we have

Lp,q1 ↪→Lp,q2 and Lp,p=Lp.

The following Lions-Peetre formula for the space-time interpolation has made a
special contribution to the proof of Theorem 1.1.
Lemma 2.4 ( [28], [11]).

Let (A0,A1,A) be an interpolation triple. Then
(i) for p0, p1∈ [1,+∞], θ∈ (0,1), there holds[

Lp0(A0),Lp1(A1)
]
(θ,q)

=Lq((A0,A1](θ,q))

provided q=p(θ) with 1
p(θ) = 1−θ

p0
+ θ
p1

;

(ii) for 1≤ q≤p≤+∞, θ∈ (0,1), there holds[
Lp(A0),Lp(A1)

]
(θ,q)

↪→Lp((A0,A1](θ,q)),

and the reverse inclusion holds for 1≤p≤ q≤+∞.

In order to estimate the convection terms in (1.1) and (1.4), we need to state some
useful commutator estimates.
Lemma 2.5 (Lemmas 2.7 and 2.8 in [24]).

(1) Given (p, t, q,m)∈ [1,+∞]4 such that

1+
1

p
=

1

t
+

1

q
+

1

m
, p≥ t and q>3(1− 1

t
).

Let f , g and h be three functions such that ∇f ∈Lq, g∈Lm and xF−1h∈Lt. Then

‖[h(D), f ]g‖Lp ≤C‖xF−1h‖Lt‖∇f‖Lq‖g‖Lm . (2.2)

where C is a constant independent of f , g, and h.
(2)Given (p, t,m)∈ [1,+∞]3 such that 1

p = 1
t + 1

m . Then there exists C>0 such that

for ∇f ∈Lt, g∈Lm and for every q∈N∪{0}

‖[∆q, f ]g‖Ẇ 1,p ≤C‖∇f‖Lt‖g‖Lm (2.3)

with the definition ‖φ‖Ẇ 1,p =‖∇φ‖Lp .

3. Some estimates on axisymmetric functions
This section is concerned with the study of actions of some operators over axisym-

metric functions.
Let’s recall first the identity about the action of the operator ∂r

r ∆−1 over axisym-
metric functions in [24].
Proposition 3.1 (Proposition 2.9 in [24]).

For every axisymmetric smooth scalar function f , we have

∂r
r

∆−1f =
x2

2

r2
R11f(x)+

x2
1

r2
R22f(x)−2

x1x2

r2
R12f(x) (3.1)

with Rij =∂ij(−∆)−1 for i, j= 1, 2.

With the aid of the identity (3.1) and the commutator estimate (2.2), similar but
more complicated than the proof of Theorem 3.1 in [24], we have
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Proposition 3.2.

Let 2≤p<6, v be an axisymmetric smooth and divergence free without swirl vector
field, curlv=ωeθ and ρ an axisymmetric smooth scalar function. Then we have, with
the notation xh= (x1,x2), that

‖[∂r
r

∆−1,v ·∇]ρ‖Lp .‖ω/r‖Lp
(
‖ρ‖L3,1 +‖ρ‖L6 + ||ρxh||L2∩B0

∞,1

)
+ ||ω/r||L2

(
||ρ||B0

6p
6−p ,2

+ ||ρ||L2 + ||ρxh||
L

6p
6−p

)
.

(3.2)

Proof. Since the functions ρ and v ·∇ρ are axisymmetric, an application of the
identity (3.1) of Proposition 3.1 shows that

∂r
r

∆−1ρ(x) =

2∑
i,j=1

aij(x)Rijρ(x)

and

∂r
r

∆−1(v ·∇ρ)(x) =

2∑
i,j=1

aij(x)Rij(v ·∇ρ)(x)

with

a11(x) =
x2

2

r2
, a12(x) =a21(x) =−x1x2

r2
, a22(x) =

x2
1

r2
. (3.3)

Hence, since the velocity v is divergence-free,

[
∂r
r

∆−1,v ·∇]ρ(x) =

2∑
i,j=1

aij(x)div

(
[Rij ,v ·∇]ρ

)
,

which immediately, according to the fact |aij(x)|≤1 (∀x∈R3, i, j= 1, 2), gives us that

‖[∂r
r

∆−1,v ·∇]ρ‖Lp ≤
2∑

i,j=1

‖div([Rij ,v]ρ)‖Lp . (3.4)

Let’s now bound the Lp norm of terms in div([Rij ,v]ρ) =
∑3
k=1∂k([Rij ,vk]ρ) step by

step.

Since an application of the Biot-Savart law shows

v1 = ∆−1
(
cos(θ)∂3ω

)
= ∆−1∂3

(
x1
ω

r

)
, v2 = ∆−1

(
sin(θ)∂3ω

)
= ∆−1∂3

(
x2
ω

r

)
,

the terms ∂1([Rij ,v1]ρ) and ∂2([Rij ,v2]ρ) can be treated in same way and hence, we
shall prove the estimate of the first one only.
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• Estimates of ∂1([Rij ,v1]ρ). Before proceeding it, let us split the term ∂1([Rij ,v1]ρ)

into thirteen terms by using Bony’s decomposition ∂1([Rij ,v1]ρ) =
∑13
`=1 I` with

I1 =R13(ω/r)L1
ijρ, I2 =∂3∆−1(ω/r)∂1L1

ijρ, I3 =∂1

∑
q≥0

[Rij ,Sq−1(L(ω/r))]∆qρ,

I4 =
∑
q≥0

∂1Rij(∆q(L(ω/r))Sq−1ρ), I5 =−
∑
q≥0

∂1{∆q(L(ω/r))RijSq−1ρ},

I6 =∂1

∑
q≥1

[Rij ,∆q(L(ω/r))]∆̃qρ, I7 =
∑

−1≤q≤0

[∂1Rij ,∆q(L(ω/r))]∆̃qρ,

I8 =−
∑

−1≤q≤0

∂1L∆q(ω/r)Rij∆̃qρ, I9 =∂1

∑
q≥0

[Rij ,Sq−1(∂3∆−1(ω/r))]∆q(x1ρ),

I10 =∂1

∑
q≥1

[Rij ,∆q(∂3∆−1(ω/r))]∆̃q(x1ρ),

I11 =∂1

∑
−1≤q≤0

[Rij ,∆q(∂3∆−1(ω/r))]∆̃q(x1ρ),

I12 =
∑
q≥0

[Rij ,∆q(∂13∆−1(ω/r)]Sq−1(x1ρ),

I13 =
∑
q≥0

[Rij ,∆q(∂3∆−1(ω/r))]∂1Sq−1(x1ρ),

where L1
ij =−2∂1∆−1Rij+δi1∂j∆

−1 +δj1∂i∆
−1 with δij denotes the Kronecker symbol,

Lij =−2Rij∆−1 and L=−2R13∆−1. We estimates them term by term.
For I1, since R13 is a Riesz operator and the operator L1

ij has a convolution kernel

whose behavior looks like 1
|x|2 (∈L3/2,∞), we deduce from Lemma 2.3 that

‖I1‖Lp =‖R13(ω/r)L1
ijρ‖Lp ≤‖R13(ω/r)‖Lp‖L1

ijρ‖L∞ .‖ω/r‖Lp‖ρ‖L3,1 .

Similarly, for I2 =∂3∆−1(ω/r)∂1L1
ijρ, ∂1L1

ij is a Riesz operator and the behavior of

∂3∆−1 is similar to the one of L1
ij , then we use Hölder’s inequality and Sobolev embed-

dings to show

‖I2‖Lp ≤‖∂3∆−1(ω/r)‖L6‖∂1L1
ijρ‖

L
6p

6−p
.‖∇∂3∆−1(ω/r)‖L2‖ρ‖

L
6p

6−p

.‖ω/r‖L2‖ρ‖
L

6p
6−p

.

In order to estimate I3, we first get that there exists a function ψ∈S(R3) such that

I3 =
∑
q≥0

∂1{[ψq(D),Sq−1(L(ω/r))]∆qρ} (3.5)

with ψq = 23qψ(2q·). As for 2≤p<∞, we have B0
p,2 ↪→Lp (see [36]), then by using Bern-

stein inequalities (2.1), it follows

‖I3‖2Lp .
∑
q≥0

‖∂1{[ψq(D),Sq−1(L(ω/r))]∆qρ}‖2Lp

.
∑
q≥0

22q‖[ψq(D),Sq−1(L(ω/r))]∆qρ‖2Lp .
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Thanks to Lemmas 2.3 and 2.5, we find

‖∂1{[ψq(D),Sq−1(L(ω/r))]∆qρ}‖Lp .2q||xψq||L1 ||∇L(ω/r)||L6 ||∆qρ||
L

6p
6−p

.‖∇2L(ω/r)||L2‖∆qρ||
L

6p
6−p

.‖ω/r||L2‖∆qρ||
L

6p
6−p

,

which leads to

‖I3‖Lp .‖ω/r‖L2‖ρ‖B0
6p

6−p ,2
.

By using the Hölder inequality and Bernstein’s inequalities (2.1) again, we show

‖I4‖2Lp +‖I5‖2Lp .
∑
q≥0

22q‖∆q(L(ω/r))Sq−1ρ‖2Lp +
∑
q≥0

22q‖∆q(L(ω/r))RijSq−1ρ‖2Lp

.
∑
q≥0

22q‖∆q(L(ω/r)‖2Lp(‖Sq−1ρ||2L∞+ ||RijSq−1ρ‖2L∞)

.‖ω/r||2Lp
∑
q≥0

2−2q(‖Sq−1ρ‖2L∞+‖RijSq−1ρ‖2L∞).‖ω/r‖2Lp‖ρ‖2Lm ,

for 3<m, and in particular,

‖I4‖Lp +‖I5‖Lp . ||ω/r||Lp‖ρ‖L6 .

To estimate I6, using Bernstein’s inequalities (2.1) yields, ∀ k∈N∪{−1},

‖∆kI6‖Lp .2k
∑
q≥k−4

‖[Rij ,∆q(L(ω/r))]∆̃qρ‖Lp .

While

‖[Rij ,∆q(L(ω/r))]∆̃qρ‖Lp

.‖∆q(L(ω/r))‖L6‖∆̃qρ‖
L

6p
6−p

+‖∆q(L(ω/r))‖L6‖Rij∆̃qρ‖
L

6p
6−p

.2−q‖ω/r‖L2‖∆̃qρ‖
L

6p
6−p

,

which follows from the embedding B0
p,2 ↪→Lp that

‖I6‖Lp .‖ω/r‖L2‖ρ‖B0
6p

6−p ,2
.

Let’s now turn to handle I7. In view of Lemma 2.5, we deduce that

‖[∂1Rij ,∆q(L(ω/r))]∆̃qρ‖Lp .‖xh‖
L

3p
p+3
‖∇L(ω/r)‖L6‖∆̃qρ‖L2 ,

where ĥ(ξ) = ξ1
ξiξj
|ξ|2 Φ(ξ) and Φ∈D(R3). An application of the well-known Mikhlin-

Hormander Theorem shows that

|h(x)|. (1+ |x|)−4, ∀x∈R3,

which leads to xh∈L
3p
p+3 and then

‖[∂1Rij ,∆q(L(ω/r))]∆̃qρ‖Lp .‖∇2L(ω/r)‖L2‖∆̃qρ‖L2 .‖ω/r‖L2‖∆̃qρ‖L2 .
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Therefore we get that

||I7||Lp ≤
∑

−1≤q≤0

‖[∂1Rij ,∆q(L(ω/r))]∆̃qρ‖Lp .‖ω/r‖L2‖ρ‖L2 .

We directly estimate by the Hölder inequality and Sobolev embeddings

||I8||Lp .
∑

−1≤q≤0

||∂1L∆q(ω/r)Rij∆̃qρ||Lp . ||∂1L(ω/r)||L6 ||ρ||
L

6p
6−p

. ||∇∂1L(ω/r)||L2 ||ρ||
L

6p
6−p

. ||ω/r||L2 ||ρ||
L

6p
6−p

.

For I9, as in (3.5), I9 =
∑
q≥0∂1{[ψq(D),Sq−1(∂3∆−1(ω/r))]∆q(x1ρ)}, thanks to

Berstein’s inequalities (2.1), we write that

‖∂1{[ψq(D),Sq−1(∂3∆−1(ω/r))]∆q(x1ρ)}‖Lp
.2q‖{[ψq(D),Sq−1(∂3∆−1(ω/r))]∆q(x1ρ)}‖Lp ,

which follows from Lemmas 2.3 and 2.5 that

‖∂1{[ψq(D),Sq−1(∂3∆−1(ω/r))]∆q(x1ρ)}‖Lp
.2q‖xψq‖L12−q‖∇∂3∆−1(ω/r)‖Lp‖∆q(x1ρ)‖L∞ .‖ω/r‖Lp‖∆q(x1ρ)‖L∞

Thus, we deduce

‖I9‖Lp ≤
∑
q≥0

‖∂1{[ψq(D),Sq−1(∂3∆−1(ω/r))]∆q(x1ρ)}‖Lp .‖ω/r||Lp‖x1ρ‖B0
∞,1

.

Note that I10 =∂1

∑
q≥1[Rij ,∆q(∂3∆−1(ω/r))]∆̃q(x1ρ), without using the structure of

the commutator, one has ∀ k∈N∪{−1}

‖∆kI10‖Lp .2k
∑
q≥k−4

‖[Rij ,∆q(∂3∆−1(ω/r))]∆̃q(x1ρ)‖Lp

.2k
∑
q≥k−4

‖∆q(∂3∆−1(ω/r))‖Lp
(
‖∆̃q(x1ρ)‖L∞+‖Rij∆̃q(x1ρ)‖L∞

)
.2k

∑
q≥k−4

2−q‖ω/r‖Lp‖∆̃q(x1ρ)‖L∞ .

Hence, we infer

‖I10‖Lp .2k
∑
q≥k−4

‖[Rij ,∆q(∂3∆−1(ω/r))]∆̃q(x1ρ)‖Lp

.2k
∑
q≥k−4

‖∆q(∂3∆−1(ω/r))‖Lp
(
‖∆̃q(x1ρ)‖L∞+‖Rij∆̃q(x1ρ)‖L∞

)
.‖ω/r‖Lp

∑
k≥−1

∑
q≥k−4

2k−q‖∆̃q(x1ρ)‖L∞ .‖ω/r‖Lp‖x1ρ‖B0
∞,1

.

While the continuity of the Riesz transform on Lλ for ∀1<λ<∞ shows us that

||[Rij ,∆q(∂3∆−1(ω/r))]∆̃q(x1ρ)||Lp . ||∆q(∂3∆−1(ω/r))||L6 ||∆̃q(x1ρ)||
L

6p
6−p

. ||ω/r||L2 ||x1ρ||
L

6p
6−p

,



Abidi and Gui 13

and then

‖I11‖Lp . ||ω/r||L2 ||x1ρ||
L

6p
6−p

.

Similarly, we may readily deduce

‖I12‖Lp +‖I13‖Lp . ||ω/r||Lp ||x1ρ||L2∩B0
∞,1

.

Therefore, we obtain

‖∂1([Rij ,v1]ρ)‖Lp .‖ω/r‖Lp
(
‖ρ‖L3,1 +‖ρ‖L6 + ||x1ρ||L2∩B0

∞,1

)
+ ||ω/r||L2

(
||ρ||B0

6p
6−p ,2

+ ||ρ||L2 + ||x1ρ||
L

6p
6−p

)
.

(3.6)

We also can show that the same estimate of ‖∂2([Rij ,v2]ρ)‖Lp is true, and let us now turn
to estimate the term ∂3([Rij ,v3]ρ) which has a different structure from ∂1([Rij ,v1]ρ).
• Estimate of ∂3([Rij ,v3]ρ). We first have the decomposition

−∂3([Rij ,v3]ρ) =

2∑
k=1

∂3(∂k∆−1(ω/r)[Rij ,xk]ρ)+2∂3([Rij ,xk]ρ)

+2∂3([Rij ,∆−1R33(ω/r)]ρ)+

2∑
k=1

∂3([Rij ,∂k∆−1(ω/r)](xkρ)

= I+II+III.

To estimate the first term I, we use the form

∂3(∂k∆−1(
ω

r
)[Rij ,xk]ρ) =R3k(

ω

r
)Lkijρ+∂k∆−1(

ω

r
)∂3Lkijρ

to give

‖I‖Lp ≤
2∑
i=1

(
||Lkijρ||L∞ ||R13(ω/r)||Lp + ||∂k∆−1(ω/r)||L6 ||∂3Lkijρ||

L
6p

6−p

)
. ||ω/r||Lp‖ρ‖L3,1 + ||ω/r||L2 ||ρ||

L
6p

6−p
.

As the operator ∆−1R33 has the same properties as L=−2∂13∆−2, then the estimates
of the terms II and III are similar to the ones of I` for 3≤ `≤13. Hence, one finds

‖∂3([Rij ,v3]ρ)‖Lp .‖ω/r‖Lp
(
‖ρ‖L3,1 +‖ρ‖L6 + ||x1ρ||L2∩B0

∞,1

)
+ ||ω/r||L2

(
||ρ||B0

6p
6−p ,2

+ ||ρ||L2 + ||x1ρ||
L

6p
6−p

)
.

(3.7)

Combining (3.6) with (3.7) and (3.4) leads to (3.2), which concludes the proof of the
proposition.

In order to bound ||xhρ||L1
t (B

0
∞,1) in Proposition 4.3 in Section 4, we need also to

estimate the commutator about the Littlewood-Paley operator ∆q.
Proposition 3.3.

Under the assumptions in Proposition 3.2, there holds for every q∈N∪{−1}

‖[∆q,v ·∇]ρ‖Lp .‖ω/r‖L2‖ρ||
L

6p
6−p

+ ||ω/r||Lp ||xhρ‖L∞+ ||ω/r||Lp ||ρ||L3 (3.8)
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and

‖[∆q,v ·∇]ρ‖L2 .‖ω/r‖L3,1

(
‖ρ‖L2 +‖ρxh‖L6

)
. (3.9)

Proof. Since the velocity v is divergence-free, we rewrite [∆q,v ·∇]ρ as the form

[∆q,v ·∇]ρ=

3∑
j=1

∂j [∆q,v
j ]ρ= I+II+III.

For I, we decompose it into the following four terms:

I=∂1

(
[∆q,L(ω/r)]ρ

)
+∂1

(
[∆q,∆

−1∂3(ω/r)](x1ρ)
)
−
(
R13(ω/r)

)
22qϕ1(2q.)?ρ

−{∆−1∂3(ω/r)}23q(∂1ϕ1)(2q.)?ρ=

4∑
`=1

I`,

with L=−2R13∆−1 and ϕ1(x) =x1ϕ(x)∈S(R3).
Thanks to (2.3), Sobolev embeddings, and Lemma 2.3, we deduce

‖I1‖Lp .‖∇L(ω/r)‖L6‖ρ||
L

6p
6−p

.‖∇2L(ω/r)‖L2‖ρ||
L

6p
6−p

.‖ω/r‖L2‖ρ||
L

6p
6−p

,

‖I2||Lp . ||∇∆−1∂3(ω/r)||Lp ||x1ρ||L∞ . ||ω/r||Lp ||x1ρ||L∞

and

‖I3||Lp +‖I4||Lp
. ||R13(ω/r)||Lp22q||ϕ1(2q.)?ρ||L∞+ ||∆−1∂3(ω/r)||L623q||(∂1ϕ1)(2q.)?ρ||

L
6p

6−p

. ||ω/r||Lp ||ϕ1||
L

3
2
||ρ||L3 + ||ω/r||L2 ||∂1ϕ1||L1 ||ρ||

L
6p

6−p

. ||ω/r||Lp ||ρ||L3 + ||ω/r||L2 ||ρ||
L

6p
6−p

.

Thus it follows

‖I‖Lp .‖ω/r‖L2‖ρ||
L

6p
6−p

+ ||ω/r||Lp ||x1ρ||L∞+ ||ω/r||Lp ||ρ||L3 .

In the same way, we may get that

‖II‖Lp .‖ω/r‖L2‖ρ||
L

6p
6−p

+ ||ω/r||Lp ||x2ρ‖L∞+ ||ω/r||Lp ||ρ||L3 .

Let’s turn to estimate III. In fact, we first show

−III=∂3{[∆q,∇h∆−1(ω/r)](xhρ)}+2∂3{[∆q,∆
−1R33(ω/r)]}

+2−q(∂3∇h∆−1(ω/r))(23qϕh(2q.)?ρ)+∇h∆−1(ω/r)(23q(∂3ϕh)(2q.)?ρ)

=

4∑
`=1

III`,

with ϕh(x) =xhϕ(x).
Thanks to (2.3) and Sobolev embeddings, we find that

‖III1‖Lp +‖III2‖Lp .‖∇2∆−1(ω/r)‖Lp‖xhρ‖L∞+‖∇∆−1R33(ω/r)‖L6‖ρ‖
L

6p
6−p

. ||ω/r||Lp ||xhρ||L∞+‖ω/r‖L2‖ρ||
L

6p
6−p

.
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The estimates of III3 and III4 follow from Bernstein’s inequality (2.1) to show

‖III3‖Lp +‖III4‖Lp
.2−q||ω/r||Lp23q||ϕh(2q.)?ρ||L∞+ ||∇h∆−1(ω/r)||L623q||(∂3ϕh)(2q.)?ρ||

L
6p

6−p

. ||ω/r||Lp ||ϕh||
L

3
2
||ρ||L3 + ||ω/r||L2 ||∂3φh||L1 ||ρ||

L
6p

6−p

. ||ω/r||Lp ||ρ||L3 + ||ω/r||L2 ||ρ||
L

6p
6−p

.

This completes the proof of (3.8).
The second inequality (3.9) is in Proposition 3.2, [24], we omit its proof.
This finishes the proof of the proposition.

4. Proof of Theorem 1.1

4.1. A priori estimate
The existence and uniqueness of the solution to the system (1.1) was obtained

in [35], we just need to give some necessary a priori estimates for the proof of Theorem
1.1.

In the rest of this paper, we always denote

φk(t) =C0 exp(...exp︸ ︷︷ ︸
k times

(C0t
3)...),

where C0 depends on the involved norms of the initial data and its value may vary from
line to line up to some absolute constants and independent of µ.

Let’s first recall the following proposition obtained (with a slight modification)
in [24].
Proposition 4.1. (Propositions 4.1 and 4.2 of [24])

Let (uµ,ρµ) be a smooth solution of (1.1), then
(1) for p∈ (1,+∞) , q∈ [1,+∞], and t∈R+, we have

‖ρµ(t)‖L∞t L2 +‖∇ρµ‖L2
tL

2 ≤2‖ρ0‖L2 and ‖ρµ‖L∞t Lp,q ≤‖ρ
0‖Lp,q ;

(2) for ρ0∈L2, u0∈L2, and t∈R+, we have

‖uµ(t)‖L2 ≤C0(1+ t);

(3) for ρ0∈L2 and t∈R+, we have

||ρµ(t)||L∞ ≤C0(1+ t−
3
4 );

(4) for ρ0∈L2, xhρ
0∈L2, and t∈R+, we have

||xhρµ||L∞t L2 + ||∇(xhρµ)||L2
tL

2 ≤C0(1+ t
5
4 );

(5) for ρ0∈Lm∩L2 with m>6, xhρ
0∈L2, and t∈R+, we have

||xhρµ(t)||L∞ ≤C0(t
1
4 + t−

3
4 );

(6) for |xh|2ρ0∈L2, ρ0∈L2, and t∈R+, we have

|||xh|2ρµ||L∞t L2 + ||∇(|xh|2ρµ)||L2
tL

2 ≤C0(1+ t
5
2 );
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(7) for ρ0∈L6, |xh|2ρ0∈L2, ρ0∈L2, and t∈R+, we have

|||xh|2ρµ(t)||L6 ≤C0(t
13
6 + t−

1
2 ),

where constants C0 depend only on the norm of the initial data involved in the estimates,
and are independent of µ.

In order to get the further estimate about ‖|xh|2ρµ(t)‖L∞ , we recall the following
Nash-De Giorgi estimate for the convection-diffusion equation.
Lemma 4.1 (Lemma A.1 in [24]).

Consider the equation{
∂tf+(v ·∇)f−∆f =∂iF +G, ∀t>0, x∈R3,

f(0,x) =f0(x).
(4.1)

Let (p,q,p1,q1)∈ [1,+∞]4 and r∈ [2,+∞], such that

2

p
+

3

q
<1,

2

p1
+

3

q1
<2.

There exists C>0 such that for every smooth divergence free vector field v, for every
F ∈LpTLq and for every f ∈Lr, the solution of (4.1) satisfies the estimate : for every
t∈]0,T ],

||f(t)||L∞ ≤C(1+ t−
3
2r )||f0||Lr +C(1+

√
T

1−( 2
p+ 3

q )
)||F ||LpTLq

+C(1+
√
T

2−( 2
p1

+ 3
q1

)
)||G||Lp1T Lq1 . (4.2)

With this lemma in hand, we may deduce that
Proposition 4.2.

Under the assumptions of Proposition 4.1, ρ0∈Lm∩L2 with m>6 and |xh|2ρ0∈L2,
there exists a constant C0>0 such that ∀ t∈R+,,

1. for p∈ [2,∞],

‖xhρµ‖Lp ≤C0(t
5
4 + t−

3
4 ), (4.3)

2.

|||xh|2ρµ(t)||L∞ ≤C0(t
−3
4 + t

3
4 ). (4.4)

Proof. The first inequality (4.3) can be immediately obtained by using the interpo-
lation inequality, Young’s inequality and Proposition 4.1.
For the second estimate (4.4), denoting gµ := |xh|2ρµ and fµ :=xhρµ, from the ρµ equa-
tion in (1.1), we know that gµ satisfies the convection-diffusion equation

∂tgµ+uµ ·∇gµ−∆gµ= 2uµ,h ·fµ−2(∂1ρµ+∂2ρµ)−4∂1(x1ρµ)−4∂2(x2ρµ)+8ρµ.

Then by Lemma 4.1 and Proposition 4.1, we obtain

‖gµ(t)‖L∞ . (1+ t
−3
4 )‖g0‖L2 +(1+ t

1
4 )‖ρµuµ,h‖L∞t (L2) +(1+ t

1
2 )‖ρµ‖L∞t (L∞)

+(1+ t
1
2 )‖xhρµ‖L∞t (L∞) +(1+ t

1
4 )‖ρµ‖L∞t (L2)

≤C0(t
−3
4 + t

1
2 + t−

1
4 + t

3
4 + t

1
4

)
≤C0(t

−3
4 + t

3
4

)
,
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which completes the proof of the proposition.

Let’s now turn to get the estimate of ||xhρµ||L1
tB

0
∞,1

.

Proposition 4.3.
Under the assumption of Proposition 4.2, there holds ∀ t∈R+

||xhρµ||L1
tB

0
∞,1
≤C0(1+ t

9
4 )+C0

∫ t

0

(τ2 +τ−
3
4 )log(2+ ||ωµ

r
||L∞τ L2)dτ. (4.5)

Proof. Thanks to Proposition 4.1 and Bernstein inequalities (2.1), we find that

||xhρµ||L1
tB

0
∞,1

=

∫ t

0

∑
−1≤q≤N(τ)

||∆q(xhρµ)(τ)||L∞ dτ+

∫ t

0

∑
q>N(τ)

||∆q(xhρµ)(τ)||L∞ dτ

.
∫ t

0

(τ
1
4 +τ

−3
4 )(2+N(τ))dτ+

∫ t

0

∑
q>N(τ)

2
3
2 ||∆q(xhρµ)(τ)||L2 dτ

for any positive fixed integer N(τ) which will be determined later on. In order to control
the last sum in the above inequality, we localize in frequency the equation of fµ=xhρµ

∂tfµ+uµ ·∇fµ−∆fµ=uµ,hρµ−2∇hρµ
def
= Fµ

to give

∂tfµ,q+uµ ·∇fµ,q−∆fµ,q =−[∆q,uµ ·∇]fµ+Fµ,q, (4.6)

where fµ,q
def
= ∆qfµ, q∈N∪{−1}.

A standard energy estimate of the system (4.6) yields that ∀ q≥0

‖fµ,q(t)‖L2 .e−ct2
2q

||fµ,q(0)||L2 +

∫ t

0

e−c(t−τ)22q(
||[∆q,uµ ·∇]fµ||L2 + ||Fµ,q||L2

)
dτ.

(4.7)
To estimate the commutator in the right hand side, we can use Propositions 3.3 and 4.2
to give

||[∆q,uµ ·∇]fµ(τ)||L2 . ||(ωµ
r

)(τ)||L2(|||xh|2ρµ(τ)||L∞+ ||xhρµ||L3)

. ||(ωµ
r

)(τ)||L2(τ
5
4 +τ−

3
4 ),

which shows us, when setting κ(τ) := τ
5
4 +τ−

3
4 , that∫ t

0

∑
q>N(τ)

2
3
2 q||∆q(xhρµ)(τ)||L2dτ

. ||f0||L2 + ||Fµ||L1
tL

2 +

∫ t

0

||ωµ
r
||L∞τ L2

( ∑
q>N(τ)

2q
3
2

∫ τ

0

e−c(τ−τ
′)22q

κ(τ ′)dτ ′
)
dτ.

(4.8)

Moreover, thanks to Proposition 4.1, we immediately get

||Fµ||L1
tL

2 ≤
√
t‖∇ρµ‖L2

tL
2 +‖uµ‖L∞t L2‖ρµ‖L1

tL
∞ .1+ t2.
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Thus, from (4.8), one finds

||xhρµ||L1
tB

0
∞,1

. (1+ t2)+

∫ t

0

(τ
1
4 +τ−

3
4 )N(τ)dτ

+

∫ t

0

||ωµ
r
||L∞τ L2(

∑
q>N(τ)

2q
3
2

∫ τ

0

e−c(τ−τ
′)22q

(τ ′
5
4 +τ ′

− 3
4 )dτ ′)dτ

. (1+ t2)+

∫ t

0

(τ
1
4 +τ−

3
4 )N(τ)dτ

+

∫ t

0

||ωµ
r
||L∞τ L2

(
τ

5
4 2−

1
2N(τ) +

∑
q>N(τ)

2q
3
2

∫ τ

0

e−c(τ−τ
′)22q

τ ′−
3
4 dτ ′

)
dτ.

(4.9)

For the term
∑
q>N(τ) 2q

3
2

∫ τ
0
e−c(τ−τ

′)22q

τ ′−
3
4 dτ ′, a change of variables shows us that

∑
q>N(τ)

2q
3
2

∫ τ

0

e−c(τ−τ
′)22q

τ ′−
3
4 dτ ′=

∑
q>N(τ)

2qe−cτ22q

∫ 22qτ

0

ecτ
′
τ ′−

3
4 dτ ′

=
∑

q∈B1(τ)

2qe−cτ22q

∫ 22qτ

0

ecτ
′
τ ′−

3
4 dτ ′+

∑
q∈B2(τ)

2qe−cτ22q

∫ 22qτ

0

ecτ
′
τ ′−

3
4 dτ ′

=: I(τ)+II(τ)

(4.10)

with

B2(τ) ={q|q>N(τ) and τ22q≥1} and B2(τ) ={q|q>N(τ) and τ22q≤1}.

Using integration by parts, one can see

I(τ). τ−
3
4

∑
q>N(τ)

2−
1
2 . τ−

3
4 2−

1
2N(τ). (4.11)

While for the second term II(τ), one finds

II(τ).
∑

q∈B2(τ)

2q.2−
1
2N(τ)

∑
2−2q≤τ−1

2
3
2 q.2−

1
2N(τ)(1+τ−

3
4 ). (4.12)

Hence, plugging (4.11) and (4.12) into (4.10) yields∑
q>N(τ)

2q
3
2

∫ τ

0

e−c(τ−τ
′)22q

τ ′−
3
4 dτ ′.2−

1
2N(τ)(1+τ−

3
4 ). (4.13)

Therefore, combining (4.13) with (4.9), we obtain

||xhρµ||L1
tB

0
∞,1

. (1+ t2)+

∫ t

0

(
τ

5
4 +τ−

3
4

)(
N(τ)+2+‖ωµ

r
||L∞τ L22−

1
2N(τ)

)
dτ. (4.14)

Choose N(τ) in (4.14) such that

N(τ) = 2[log2(2+ ||ωµ
r
||L∞τ L2)],
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we have

||xhρµ||L1
tB

0
∞,1
≤C0(1+ t

9
4 )+C0

∫ t

0

(τ2 +τ−
3
4 )log(2+ ||ωµ

r
||L∞τ L2)dτ.

This completes the proof of the proposition.

Based on Propositions 4.3 and 3.2, we may get the control of ‖ωµr ‖L∞t L2 .
Proposition 4.4.

Under the assumptions in Proposition 4.1, let u0∈L2 be an axisymmetric vector field

such that ω0

r ∈L
2 and ρ0∈L2∩Lm for m>6, axisymmetric and such that |xh|2ρ0∈L2.

Then, we have for every t∈R+

||ωµ
r
||L∞t L2 ≤φ2(t). (4.15)

Proof. Recall that the equation of the scalar component of the vorticity ∇×uµ=
ωµeθ is given by

∂tωµ+uµ ·∇ωµ−µ∂2
zωµ=

urµ
r
ωµ−∂rρµ. (4.16)

It follows that the evolution of the quantity
ωµ
r is governed by the equation

(∂t+uµ ·∇−µ∂2
z )
ωµ
r

=−∂rρµ
r

. (4.17)

On the other hand, applying the operator ∂r
r ∆−1 to the equation of the density yields

(∂t+uµ ·∇)(
1

r
∂r∆

−1ρµ)− ∂rρ
r

=−[
1

r
∂r∆

−1,uµ ·∇]ρµ. (4.18)

Setting Γµ :=
ωµ
r + 1

r∂r∆
−1ρµ, we infer from (4.17) and (4.18) that the new unknown

Γµ satisfies

(∂t+uµ ·∇−µ∂2
z )Γµ=−[

1

r
∂r∆

−1,uµ ·∇]ρµ−µ∂2
z

1

r
∂r∆

−1ρµ. (4.19)

The basic L2 energy estimate of (4.19) yields

‖Γµ||L∞t L2 +µ
1
2 ||∂zΓµ‖L2

tL
2

.‖Γ0‖L2 +‖[ 1
r
∂r∆

−1,uµ ·∇]ρµ‖L1
tL

2 +µ
1
2 ‖∂z

1

r
∂r∆

−1ρµ‖L2
tL

2

. ||Γ0||L2 + ||[ 1
r
∂r∆

−1,uµ ·∇]ρµ||L1
tL

2 +µ
1
2 ||∂zρµ||L2

tL
2 .

(4.20)

From Proposition 3.2, we estimate the commutator in (4.20) to get

‖[(∂r
r

∆−1,uµ ·∇]ρµ‖L2 .‖ωµ/r‖L2

(
‖ρµ‖L2 +‖∇ρµ‖L2 + ||ρµxh||L2∩B0

∞,1

)
,

which along with (4.20) implies

‖Γµ||L∞t L2 +µ
1
2 ||∂zΓµ‖L2

tL
2

.‖Γ0‖L2 +‖ωµ/r‖L2

(
‖ρµ‖L2 +‖∇ρµ‖L2 + ||ρµxh||L2∩B0

∞,1

)
+µ

1
2 ||∂zρµ||L2

tL
2 .

(4.21)
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On the other hand, applying Proposition 4.1 shows us that

‖ρµ‖L∞t L2 +‖∇ρµ‖L2
tL

2 .‖ρ0‖L2 , ‖ρµxh‖L1
tL

2 . t+ t
9
4 , (4.22)

which follows

‖ωµ
r
||L∞t L2 +µ‖∂zωµ

r
‖L2

tL
2

≤‖Γµ||L∞t L2 +µ||∂zΓµ‖L2
tL

2 +‖1

r
∂r∆

−1ρµ‖L∞t L2 +µ‖1

r
∂r∆

−1∂zρµ‖L2
tL

2

.‖Γµ||L∞t L2 +µ||∂zΓµ‖L2
tL

2 +‖ρµ‖L∞t L2 +µ‖∂zρµ‖L2
tL

2 ,

and then

‖ωµ
r
||L∞t L2 +µ‖∂zωµ

r
‖L2

tL
2 .‖Γµ||L∞t L2 +µ||∂zΓµ‖L2

tL
2 +‖ρ0‖L2 . (4.23)

Combining (4.21) with (4.22) and (4.23) implies

‖ωµ
r
||L∞t L2 +µ‖∂zωµ

r
‖L2

tL
2

.‖Γ0‖L2 +‖ρ0‖L2 +‖ωµ/r‖L2

(
‖ρµ‖L2 +‖∇ρµ‖L2 + ||ρµxh||L2∩B0

∞,1

)
,

which, from the Gronwall inequality, gives that

‖ωµ
r
||L∞t L2 +µ‖∂zωµ

r
‖L2

tL
2 ≤C

(
‖Γ0‖L2 +‖ρ0‖L2

)
×e

C(‖ρµ‖L1
tL

2+‖∇ρµ‖L1
tL

2+||ρµxh||L1
t (L

2∩B0
∞,1)

)
.

Therefore, an application of Proposition 4.1 yields

‖ωµ
r
||L∞t L2 +µ‖∂zωµ

r
‖L2

tL
2 ≤C

(
‖Γ0‖L2 +‖ρ0‖L2

)
e
C0(
√
t+t

9
4 +‖ρµxh‖L1

tB
0
∞,1

)
,

which along with Proposition 4.3 gives rise to

‖ωµ
r
||L∞t L2 +µ‖∂zωµ

r
‖L2

tL
2 ≤C

(
‖Γ0‖L2 +‖ρ0‖L2

)
eC0(1+t

9
4 )

×exp
{
C0

∫ t

0

(τ2 +τ−
3
4 )log(2+ ||ωµ

r
||L∞τ L2)dτ

}
,

and then

log(2+ ||ωµ
r
||L∞t L2)≤ logC0 +C0(1+ t

9
4 )+C0

∫ t

0

(τ2 +τ−
3
4 )log(2+ ||ωµ

r
||L∞τ L2)dτ.

(4.24)
Therefore, applying the Gronwall inequality to (4.24) gives the desired estimate.

Proposition 4.5.
Under the assumptions in Proposition 4.1, let 5

2 <s0<3, 3<p<+∞ satisfy 0<
3
2−

3
p ≤s0, u0∈L2 be an axisymmetric vector field without swirl such that ω0

r ∈L
2∩Lp

and ρ0∈Bs02,1∩Lm, for m>6, axisymmetric and such that |xh|2ρ0∈L2. Then, we have
for every t∈R+

||ωµ
r
||L∞t Lp +‖

urµ
r
‖L∞t L∞+ ||ωµ

r
||L∞t L3,1 +‖ρµ‖L̃1

tB
2
p,∞
≤φ2(t) (4.25)
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and

‖ωµ(t)‖L∞ ≤φ3(t). (4.26)

Proof. Let’s first give some estimates of Γµ in the Lp framework. Multiplying the
Γµ equation (4.19) by |Γµ|p−2Γµ and then integrating it over R3 yields that

1

p

d

dt
||Γµ||pLp +µ‖∂z|Γµ|

p
2 ‖2L2 . ||[

1

r
∂r∆

−1,uµ ·∇]ρµ||Lp ||Γµ||p−1
Lp

−µ
∫
R3

∂2
z (

1

r
∂r∆

−1ρµ)|Γµ|p−2Γµdx

. ||[ 1
r
∂r∆

−1,uµ ·∇]ρµ||Lp ||Γµ||p−1
Lp +µ

∫
R3

|∂z
1

r
∂r∆

−1ρµ||∂z|Γµ|
p
2 ||Γµ|

p
2−1dx,

Thanks to Höder and Young inequalities, we infer that

1

p

d

dt
||Γµ||pLp+µ‖∇|Γµ|

p
2 ‖2L2 . ||[

1

r
∂r∆

−1,uµ ·∇]ρµ||Lp ||Γµ||p−1
Lp +µ‖∇ρµ‖2Lp ||Γµ||

p−2
Lp ,

and then deduce that

‖Γµ‖L∞t Lp .‖Γ
0‖Lp +‖[ 1

r
∂r∆

−1,uµ ·∇]ρµ‖L1
tL

p +µ
1
2 ‖∇ρµ‖L2

tL
p . (4.27)

In view of the definition of Γµ,

‖ωµ
r
||L∞t Lp ≤‖Γµ||L∞t Lp +‖1

r
∂r∆

−1ρµ‖L∞t Lp .‖Γµ||L∞t Lp +‖ρµ‖L∞t Lp .

which along with (4.27) implies

‖ωµ
r
‖L∞t Lp ≤C0

(
1+ ||[ 1

r
∂r∆

−1,uµ ·∇]ρµ||L1
tL

p +µ
1
2 ‖∇ρµ‖L2

tL
p

)
. (4.28)

Let’s now handle the estimate of ||[ 1
r∂r∆

−1,uµ ·∇]ρµ||L1
tL

p . From Proposition 3.2, we
have

‖[(∂r
r

∆−1,uµ ·∇]ρµ‖Lp .‖ωµ/r‖Lp
(
‖ρµ‖L3,1 +‖ρµ‖L6 + ||ρµxh||L2∩B0

∞,1

)
+ ||ωµ/r||L2

(
||ρµ||B0

6p
6−p ,2

+ ||ρµ||L2 + ||ρµxh||
L

6p
6−p

)
.

(4.29)

In the second term of the right hand side in (4.29), applying Propositions 4.1, 4.2, and
4.4 gives rise to

||ωµ/r||L2

(
||ρµ||B0

6p
6−p ,2

+ ||ρµ||L2 + ||ρµxh||
L

6p
6−p

)
.φ2(t)

(
||ρµ||B0

6p
6−p ,2

+1+ t
5
4 + t−

3
4

)
,

which follows∫ t

0

||ωµ
r
||L2

(
||ρµ||B0

6p
6−p ,2

+ ||ρµ||L2 + ||ρµxh||
L

6p
6−p

)
dτ .

∫ t

0

φ2(τ)‖ρµ‖B0
6p

6−p ,2
dτ+φ2(t).

(4.30)
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It remains the control of the Besov norm ||ρµ||B0
6p

6−p ,2
. In fact, similar to the proof of

(4.7), a standard energy estimate in local frequency of the ρµ equation shows us that
∀ q≥0

||∆qρµ(t)||L2 .e−ct2
2q

||∆qρ
0||L2 +

∫ t

0

e−c(t−τ)22q

||[∆q,uµ ·∇]ρµ||L2dτ, (4.31)

which follows, from Propositions 3.3, 4.1 and 4.4, that

‖ρµ‖L̃1
tB

2
2,∞

.‖ρ0‖L2(1+ t)+sup
q
||[∆q,uµ ·∇]ρµ||L1

tL
2

.‖ρ0‖L2(1+ t)+

∫ t

0

‖ωµ/r‖L2(‖ρµ||L3 + ||xhρµ‖L∞)dτ

.‖ρ0‖L2(1+ t)+

∫ t

0

φ2(τ)(1+τ
5
4 +τ−

3
4 )dτ .φ2(t).

(4.32)

As a consequence, we get from (4.30) that∫ t

0

||ωµ/r||L2

(
||ρµ||B0

6p
6−p ,2

+ ||ρµ||L2 + ||ρµxh||
L

6p
6−p

)
dτ

.φ2(t)(1+‖ρµ‖L1
tB

0
6p

6−p ,2
).φ2(t)(1+‖ρµ‖L̃1

tB
2
2,∞

).φ2(t).
(4.33)

An application of (4.31) shows us that

‖ρµ‖L̃∞t Bs0−2
2,1

.‖ρ0‖
B
s0−2
2,1

+
∑
q

2(s0−3)q||[∆q,uµ ·∇]ρµ||L2
tL

2

.‖ρ0‖
B
s0−2
2,1

+
(∫ t

0

(sup
q
||[∆q,uµ ·∇]ρµ||L2)2dτ

) 1
2 .

Hence, thanks to (3.9), (4.15), Proposition 4.1, and the interpolation inequality, we find

‖ρµ‖L̃∞t Bs0−2
2,1

.‖ρ0‖
B
s0−2
2,1

+‖ω/r‖L∞t L3,1

(
‖ρ‖L2

tL
2 +‖ρxh‖L2

tL
6

)
.1+(1+ t

5
4 )‖ωµ

r
‖

2(p−3)
3(p−2)

L∞t L
2 ‖
ωµ
r
‖

p
3(p−2)

L∞t L
p .1+φ2(t)‖ωµ

r
‖

p
3(p−2)

L∞t L
p .

(4.34)

On the other hand, localizing the ρµ equation in frequency in the Lp framework
yields for q∈N∪{−1}

1

p

d

dt
‖∆qρµ‖pLp−

∫
R3

∆q∆ρµ|∆qρµ|p−2∆qρµdx=−
∫
R3

[∆q,uµ ·∇]ρµ|∆qρµ|p−2∆qρµdx.

(4.35)

By using the inequality in [12]

−
∫
R3

∆q∆f |∆qf |p−2∆qf dx≥

{
c22q‖∆qf‖pLp , if q≥0,

0, if q=−1,

we get from (4.35) that

‖∆qρµ‖L∞t Lp +c22q‖∆qρµ‖L1
tL

p ≤‖∆qρ
0‖Lp +C‖[∆q,uµ ·∇]ρµ‖L1

tL
p (∀ q≥0),

‖∆−1ρµ‖L∞t Lp ≤‖∆−1ρ
0‖Lp +C‖[∆−1,uµ ·∇]ρµ‖L1

tL
p .

(4.36)
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Therefore, thanks to (4.33) and Propositions 3.3, 4.1 and 4.4, one can obtain from (4.36)
that

‖ρµ‖L̃1
tB

2
p,∞

.φ2(t)+

∫ t

0

||ω/r||Lp
(
||xhρ‖L∞+ ||ρ||L3

)
. (4.37)

By using the interpolation inequality, (4.32) and (4.34), we deduce that

‖∇ρµ‖L2
tL

p .‖ρµ‖
1
2

L̃∞t B
0
p,1

‖ρµ‖
1
2

L̃1
tB

2
p,∞

.‖ρµ‖
1
2

L̃∞t B
s0−2
2,1

‖ρµ‖
1
2

L̃1
tB

2
p,∞

.φ2(t)+φ2(t)‖ωµ
r
‖

p
6(p−2)

L∞t L
p .

(4.38)

Inserting (4.29), (4.33) and (4.38) into (4.28) yields

‖ωµ
r
‖L∞t Lp .φ2(t)+φ2(t)‖ωµ

r
‖

p
6(p−2)

L∞t L
p

+

∫ t

0

‖ωµ
r
‖Lp
(
‖ρµ‖L3,1 +‖ρµ‖L6 + ||ρµxh||L2∩B0

∞,1
+ ||xhρ‖L∞+ ||ρ||L3

)
dτ,

and then follows from Young’s inequality that

‖ωµ
r
‖L∞t Lp .φ2(t)

+

∫ t

0

‖ωµ
r
‖Lp
(
‖ρµ‖L3,1 +‖ρµ‖L6 + ||ρµxh||L2∩B0

∞,1
+ ||xhρ‖L∞+ ||ρ||L3

)
dτ.

(4.39)

Thanks to Propositions 4.1, 4.3 and 4.4, it shows

‖ρµ‖L3,1 +‖ρµ‖L6 + ||ρµxh||L2 + ||xhρ‖L∞+ ||ρ||L3 ≤C0(t
5
4 + t−

3
4 ),

and then follows from (4.39) that

‖ωµ
r
‖L∞t Lp .φ2(t)+

∫ t

0

‖ωµ
r

(τ)‖Lp
(
C0(τ

5
4 +τ−

3
4 )+ ||xhρµ(τ)||B0

∞,1

)
dτ. (4.40)

Applying Gronwall’s inequality to (4.40) leads to

‖ωµ
r
‖L∞t Lp .φ2(t)exp{C0(1+τ

9
4 +‖xhρµ‖L1

tB
0
∞,1

)}.

which follows from (4.15) and (4.5) that

||ωµ
r
||L∞t Lp ≤φ2(t) (4.41)

and then

||∇ρµ||L∞t Lp ≤φ2(t), ‖ρµ‖L̃1
tB

2
p,∞

.φ2(t), (4.42)

where we have used the inequality (4.37).

Thanks to the fact ‖u
r
µ

r ‖L∞ .‖ωµr ‖L3,1 in [2], we have

‖
urµ
r
‖L∞ .‖ωµ

r
‖L3,1 .‖ωµ

r
‖

2(p−3)
3(p−2)

L2 ‖ωµ
r
‖

p
3(p−2)

Lp ,
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then a consequence of (4.15) and (4.41) gives

‖
urµ
r
‖L∞ ≤φ2(t). (4.43)

From the maximum principle for the equation (4.16), we obtain that

‖ωµ(t)‖L∞ ≤‖ω0‖L∞+

∫ t

0

‖
urµ
r

(τ)‖L∞‖ωµ(τ)‖L∞dτ+‖∇ρµ‖L1
tL
∞ ,

which follows from the Gronwall inequality that

‖ωµ(t)‖L∞ ≤
(
‖ω0‖L∞+‖∇ρµ‖L1

tL
∞
)
e
‖
urµ
r ‖L1

tL
∞ .

(
‖ω0‖L∞+‖ρµ‖

L1
tB

1+ 3
p

p,1

)
e
‖
urµ
r ‖L1

tL
∞ .

By combining Lemma 2.2 and inequalities (4.42) and (4.43), we deduce

‖ωµ(t)‖L∞ ≤C0

(
1+‖ρµ‖L̃1

tB
2
p,∞

)
exp{‖

urµ
r
‖L1

tL
∞}.φ3(t).

This ends the proof of the proposition.

4.2. Proof of Theorem 1.1
Let’s now achieve the proof of Theorem 1.1 by giving the persistence of the initial

regularity uniformly on the viscosity.
Proof. (Proof of Theorem 1.1.) By a standard energy estimate for the system

(1.1), we have

‖uµ‖L̃∞t Hs .‖u
0‖Hs +‖ρ‖L̃1

tH
s +

∫ t

0

(∑
q

22qs‖[∆q,uµ ·∇]uµ‖2L2dτ
) 1

2
(4.44)

and

‖ρµ‖L̃∞t Hs−2 +‖ρµ‖L̃1
tH

s

.‖ρ0‖Hs−2 +‖∆−1ρµ‖L1
tL

2 +

∫ t

0

(∑
q

22q(s−2)‖[∆q,uµ ·∇]ρµ‖2L2dτ
) 1

2 .
(4.45)

We recall the proof of Lemma 2.100 in [5] to estimate commutators in (4.45)(∑
q

22qs‖[∆q,uµ ·∇]uµ‖2L2dτ
) 1

2 .‖∇uµ‖L∞‖uµ‖Hs

and (∑
q

22q(s−2)‖[∆q,uµ ·∇]ρµ‖2L2 .‖∇uµ‖L∞‖ρµ‖Hs−2 +‖∇ρµ‖L∞‖uµ‖Hs−2 .

Hence, thanks to ‖∆−1ρµ‖L1
tL

2 . t‖ρ0‖L2 , one can show from (4.44) and (4.45) that

‖ρµ‖L̃∞t Hs−2 +‖ρµ‖L̃1
tH

s .‖ρ0‖Hs−2 + t‖ρ0‖L2

+

∫ t

0

(
‖∇uµ‖L∞‖ρµ‖Hs−2 +‖∇ρµ‖L∞(‖uµ‖L2 +‖uµ‖Hs)

)
dτ,
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and then

‖ρµ‖L̃∞t Hs−2 +‖ρµ‖L̃1
tH

s +‖uµ‖L̃∞t Hs

.‖ρ0‖Hs−2 + t‖ρ0‖L2 +‖u0‖Hs +

∫ t

0

‖∇ρµ‖L∞‖uµ‖L2dτ

+

∫ t

0

‖∇uµ‖L∞‖ρµ‖Hs−2 +

∫ t

0

(
‖∇ρµ‖L∞+‖∇uµ‖L∞

)
‖uµ‖Hsdτ.

Then, an application of the Gronwall inequality gives rise to

‖ρµ‖L̃∞t Hs−2 +‖ρµ‖L̃1
tH

s +‖uµ‖L̃∞t Hs

.
(
‖ρ0‖Hs−2 + t‖ρ0‖L2 +‖u0‖Hs +

∫ t

0

‖∇ρµ‖L∞‖uµ‖L2dτ
)
e
C(‖∇uµ‖L1

tL
∞+‖∇ρµ‖L1

tL
∞ )
.

(4.46)
Note that, from Proposition 4.1 and inequality (4.42), we have

‖∇ρµ‖L1
tL
∞ .‖ρµ‖L̃1

tB
2
p,∞

.φ2(t),

and then ∫ t

0

‖∇ρµ‖L∞‖uµ‖L2dτ ≤φ2(t),

which along with (4.46) implies

‖ρµ‖L̃∞t Hs−2 +‖ρµ‖L̃1
tH

s +‖uµ‖L̃∞t Hs ≤φ3(t)e
C‖∇uµ‖L1

tL
∞ . (4.47)

In view of the classical logarithmic Sobolev embedding inequality

‖∇uµ‖L∞ .‖uµ‖L2 +‖ωµ‖L∞ log(e+‖uµ‖Hs) (∀ s> 5

2
),

we deduce from the inequality (4.47) and Proposition 4.5 that ∀t∈R+

‖∇uµ(t)‖L∞ ≤φ3(t)
(
1+

∫ t

0

‖∇uµ‖L∞dτ
)
.

It follows from Gronwall inequality that ∀t∈R+

‖∇uµ(t)‖L∞ ≤φ4(t).

Plugging this estimate into (4.47) gives

‖ρµ‖L̃∞t Hs−2 +‖ρµ‖L̃1
tH

s +‖uµ‖L̃∞t Hs ≤φ5(t).

This ends the proof of the theorem.

5. The Rate Convergence With Theorem 1.1 in hand, we are now in a position
to get the convergence rate of the solution of the Navier-Stokes-Boussinesq equations
(1.1) to the one of the Euler-Boussinesq equations (1.4).

Proof. (Proof of Theorem 1.2.) Let (ρµ, uµ, pµ) and (ρ, u, p) be solutions of
(1.1) and (1.4) respectively, and denote

%µ :=ρµ−ρ, zµ :=uµ−u and Pµ :=pµ−p,
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we can easily check that (%µ,zµ,Pµ) satisfies the system
∂t%µ+uµ ·∇%µ−∆%µ=−zµ ·∇ρ, (t,x)∈ R+×R3

∂tzµ+uµ ·∇zµ+∇Pµ=µ∂2
zuµ+%µez−zµ ·∇u,

divzµ= 0,
zµ|t=0 = 0, %µ|t=0 = 0.

Similar to inequalities (4.44) and (4.45), the energy estimate in localized frequency
shows us that

‖zµ‖L̃∞t Hs−2 .‖%µ‖L̃1
tH

s−2 + tµ‖uµ‖L∞t Hs +‖zµ ·∇u‖L1
tH

s−2

+

∫ t

0

(∑
q

22q(s−2)‖[∆q,uµ ·∇]zµ‖2L2dτ
) 1

2
(5.1)

and

‖%µ‖L̃∞t Hs−2 +‖%µ‖L̃1
tH

s .‖∆−1%µ‖L1
tL

2 +‖zµ ·∇ρ‖L1
tH

s−2

+

∫ t

0

(∑
q

22q(s−2)‖[∆q,uµ ·∇]%µ‖2L2dτ
) 1

2 .
(5.2)

As s> 5
2 , according to Bony’s decomposition and Bernstein’s inequality, we get

‖zµ ·∇u‖Hs−2 .‖zµ‖Hs−2‖∇u‖L∞+‖zµ‖L3‖∇u‖Bs−2
6,2

.‖zµ‖Hs−2‖u‖Hs
(5.3)

and for some λ>3 (with Hs−2 ↪→Lλ)

‖zµ ·∇ρ‖L1
tH

s−2 .‖zµ‖Hs−2‖∇ρ‖L∞+‖zµ‖Lλ‖∇ρ‖Bs−2
2λ
λ−2

,2

.‖zµ‖Hs−2

(
‖∇ρ‖L∞+‖ρ‖

Hs+
3
λ
−1

)
.

(5.4)

Recall the proof of Lemma 2.100, [5], we have(∑
q

22q(s−2)‖[∆q,uµ ·∇]zµ‖2L2dτ
) 1

2

.

 ‖∇uµ‖
B

3
2
2,∞∩L∞

‖zµ‖Hs−2 if s< 9
2

‖∇uµ‖L∞‖zµ‖Hs−2 +‖∇zµ‖L2‖uµ‖Bs−2
∞,2

if s≥ 9
2 ,

then ∀s> 5
2 , we have

(∑
q

22q(s−2)‖[∆q,uµ ·∇]zµ‖2L2dτ
) 1

2 .‖uµ‖Hs‖zµ‖Hs−2 . (5.5)

Similarly, one can show(∑
q

22q(s−2)‖[∆q,uµ ·∇]%µ‖2L2 .‖uµ‖Hs‖%µ‖Hs−2 . (5.6)



Abidi and Gui 27

Plugging (5.3-5.6) into (5.1) and (5.2), we obtain from Minkowski’s inequality and the
fact ‖∆−1%µ‖L1

tL
2 .‖%µ‖L1

tH
s−2 , that

‖zµ‖L̃∞t Hs−2 +‖%µ‖L̃∞t Hs−2 +‖%µ‖L̃1
tH

s . tµ‖uµ‖L∞t Hs +

∫ t

0

‖%µ‖Hs−2

(
1+‖uµ‖Hs

)
dτ

+

∫ t

0

‖zµ‖Hs−2

(
‖u‖Hs +‖∇ρ‖L∞+‖ρ‖

Hs+
3
λ
−1

)
dτ,

which follows from the Gronwall inequality that

‖zµ‖L̃∞t Hs−2 +‖%µ‖L̃∞t Hs−2 +‖%µ‖L̃1
tH

s

≤Ctµ‖uµ‖L∞t Hs exp{C(t+ t‖uµ‖L∞t Hs + t‖u‖L∞t Hs +‖∇ρ‖L1
tL
∞+‖ρ‖

L1
tH

s+ 3
λ
−1)}.

(5.7)

Thanks to the fact that s> 5
2 and λ>3, we get from Remark 1.1 that

t‖u‖L∞t Hs +‖∇ρ‖L1
tL
∞+‖ρ‖

L1
tH

s+ 3
λ
−1 . t‖u‖L∞t Hs +‖ρ‖L̃1

tH
s ≤φ5(t),

which along with (1.6) implies

‖zµ‖L̃∞t Hs−2 +‖%µ‖L̃∞t Hs−2 +‖%µ‖L̃1
tH

s ≤ (µt)φ6(t),

that is, (1.7) holds. This achieves the proof of the theorem.
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