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1. Introduction

In this paper, we consider the global well-posedness to the following two-dimensional Boussinesq
equations with variable viscous coefficient

(1.1)


∂tθ + u · ∇θ + ν|D|θ = 0, (t, x) ∈ R+×R2,
∂tu+ u · ∇u− div(2µ(θ)d) +∇Π = θe2,
divu = 0,
(θ, u)|t=0 = (θ0, u0),

where θ, u = (u1, u2) stand for the temperature and velocity of the fluid respectively, d =
(
dij
)

2×2

with dij = 1
2(∂iuj + ∂jui)i,j denotes the deformation matrix, Π is a scalar pressure function, and in

general, and the kinematic viscous coefficient µ(θ) is a smooth, positive and non-decreasing function
on [0,∞). The thermal conductivity coefficient ν ≥ 0, and e2 = (0, 1), θe2 denotes buoyancy force.
Furthermore, in all that follows, we shall always denote |D|s to be the Fourier multiplier with
symbol |ξ|s.

The Boussinesq system arises from a zeroth order approximation to the coupling between Navier-
Stokes equations and the thermodynamic equations. It can be used as a model to describe many
geophysical phenomena ([26]). In the Boussinesq approximation of a large class of flow problems,
thermodynamic coefficients such as kinematic viscosity, specific heat and thermal conductivity may
be assumed to be constants, leading to a coupled system of parabolic equations.

However, there are some fluids such as lubrificants or some plasma flow for which this is not an
accurate assumption [19, 27], and a quasilinear parabolic system as follows has to be considered:

(1.2)

 ∂tθ + u · ∇θ −∆ϕ(θ) = 0, (t, x) ∈ R+×Rd,
∂tu+ u · ∇u− div(2µ(θ)d) +∇Π = F (θ),
divu = 0.

One may check [18] and the references therein for more details about (1.2). Under some technical
assumptions, the global existence of weak solutions to (1.2) and in the case of constant viscosity,
the uniqueness of such weak solutions in two space dimension was proved in [18].

Recently big progresses have been made on the global well-posedness of the System (1.2) espe-
cially with F (θ) = θe2 in (1.2) and in two space dimension. In this case, Wang and Zhang [29]
proved the global existence of smooth solutions to (1.2) under the assumptions that both ϕ′(·)
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and µ(·) belong to L∞(R+) and have positive lower bounds. We remark that the most crucial
part in [29] is to use De-Giorgi method to derive the a priori estimate of ‖θ‖L∞((δ,T );Cα) for some
α > 0 and any δ ∈]0, T [. Even with ϕ(θ) = 0 and µ(θ) = µ > 0 in (1.2), Chae [10] and Hou,
Li [25] independently proved the global existence of smooth solutions to (1.2), the first author
of this paper and Hmidi [3] established the global well-posedness of this system with initial data
satisfying (θ0, u0) ∈ B0

2,1(R2) ×
(
L2 ∩ B−1

∞,1
)
(R2). When ϕ′(θ) = ν > 0 and µ(θ) = 0, Hmidi and

Keraani [21] proved the global existence and uniqueness of solutions to (1.2) with u0 ∈ Hs(R2) and
θ0 ∈ B0

2,1(R2)∩B0
p,∞(R2) for s ∈]0, 2] and p ∈]2,∞]. We also mention the 3-D well-posedness result

on this problem with small initial data in [15]
There are also many studies on the so-called Boussinesq system with critical dissipation in two

space dimension, which reads

(1.3)


∂tθ + u · ∇θ + ν|D|θ = 0, (t, x) ∈ R+×R2,
∂tu+ u · ∇u+ µ|D|u+∇Π = θe2,
divu = 0,
(θ, u)|t=0 = (θ0, u0).

When ν = 0 and µ > 0, the above system is called Boussinesq-Navier-Stokes system with critical
dissipation, Hmidi, Keraani and Rousset [22] proved the global well-posedness of such system.
When ν > 0 and µ = 0, the System (1.3) is called Boussinesq-Euler system with critical dissipation,
Hmidi, Keraani and Rousset [23] proved its global well-posedness. We emphasize that the authors
of [22, 23] used crucially the structure of the System (1.3), namely, the quantity, Γ = ω + Rθ,
for ω = ∂1u2 − ∂2u1 and the Riesz transform R = ∂1/|D|. Very recently even the logarithmically
critical Boussinesq system was investigated by Hmidi in [20]. There are also studies to the global
well-posedness of the anisotropic Boussinesq system (with partial thermal conductivity and partial
kinematic viscosity) in two space dimension (see [9, 16] for instance).

On the other hand, the first author of this paper [1] proved the global well-posedness of (1.2) in
two space dimension under the assumptions that: ϕ(θ) = 0, F (θ) = 0, and the initial data satisfies

θ0 ∈ Ḃ1
2,1(R2), u0 ∈

(
L2 ∩ Ḃ−1

∞,1
)
(R2), moreover for some sufficiently small ε, there holds

‖θ0‖Ḃ1
2,1

+ ‖µ(θ0)− 1‖L∞ ≤ ε.

Motivated by [1] and the recent results of the authors [4, 5] concerning the global well-posedness
of inhomogeneous Navier-Stokes system with variable density (see also [17, 24]), we [6] proved
the global well-posedness of (1.2) in 3-D with ϕ = 0, F (θ) = 0 and with initial data θ0 ∈

(
B1

3,1 ∩
B

(1/2)+
∞,∞

)
(R3) and u0 ∈

(
Ḣ−2δ∩Ḃ0

3,1

)
(R3) for some δ ∈]0, 1/2[, provided that there exist a sufficiently

small constant ε0, and some small enough constant ε, which depends on ‖θ0‖
Ḃ1

3,1∩B
(1/2)+
∞,∞

, such that

‖µ(θ0)− 1‖L∞ ≤ ε0 and ‖u0‖Ḃ0
3,1
≤ ε.

The purpose of this paper is to prove the global well-posed of the System (1.1) with general
initial data and under the assumption of (1.5).

In what follows, we shall always make the following conventions that ν = 1 in (1.1), and

0 < 1 ≤ µ(θ), µ(·) ∈W 2,∞(R+), µ(0) = 1, and p∗
def
= 1

/
C‖1− µ(·)‖L∞(1.4)

for some large enough positive constant C.
The main result of this paper states as follows:

Theorem 1.1. Let q ∈]1, 4/3[, p ∈
]
4, p∗

]
and s0 ∈

]
1, 2(2/q− 1)

[
. Let θ0 ∈

(
Lq ∩ Ḣ−s0 ∩H1/2

)
∩

B
1/2
p,∞ and u0 ∈ Ḃ−1

∞,1 ∩H1 be a solenoidal vector filed. Then there exists some sufficiently small ε0

so that if we assume

(1.5) ‖µ(·)− 1‖L∞(R+) ≤ ε0,
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(1.1) has a unique global solution (θ, u) so that

θ ∈ C
(
[0,∞);Lq ∩ Ḣ−s0 ∩H1/2

)
∩ L∞(R+;B1/2

p,∞)

∩ L2(R+;H1) ∩ L̃1
loc(R+;B3/2

p,∞) and

u ∈ C([0,∞);H1) ∩ L̃2(R+; Ḃ
3/2
2,∞) ∩ L1

loc(R+; Ḃ1
∞,1), ∂tu ∈ L2(R+;L2).

(1.6)

Furthermore, there holds

(1.7) ‖θ(t)‖L2 ≤ CE0〈t〉−s0 for 〈t〉 def= e+ t,

where

(1.8) E0
def
= E0

(
1 + E0

)
and E0

def
= ‖θ0‖L2∩Ḣ−s0 + ‖u0‖L2 + ‖θ0‖Lq

(
‖u0‖L2 + ‖θ0‖Lq

)
.

We shall present the functional space framework in Section 3

Remark 1.1. Let us give the following remarks concerning this theorem:

(1) The above theorem works for viscous coefficient of the type µ(θ) = 1 + ε0ζ(θ) with ζ ∈ L∞.
(2) Note from the proof of Proposition 4.1 of [29] that: for a smooth enough solution (θ, u)

of (1.2), the a priori estimates of ‖u‖L∞t (L2)∩L2
t (Ḣ

1) and ‖θ‖L∞t (L2)∩L2
t (Ḣ

1), which can be

provided by energy conservation law, are almost critical to use De-Giorgi method to de-
rive the space Hölder estimate for θ. With the a priori estimates of ‖u‖L∞t (L2)∩L2

t (Ḣ
1) and

‖θ‖L∞t (L2)∩L2
t (Ḣ

1/2), we do not know how to go through the proof of Proposition 4.1 of [29],

which is the case for the System (1.1).
(3) It is easy to observe that for the System (1.1) with variable viscosity µ(θ), the quantity,

Γ = ω +Rθ, does not satisfy a “good” equation as that in in [22, 23]. Hence it is not clear
to use the approach in [22, 23] to deal with the well-posedness theory of (1.1).

(4) Compared with the results in [4, 5] and [24] for the inhomogeneous Navier-Stokes system
with variable viscosity, here ε0 is a uniform small positive constant, which does not depend
on θ0. While in [4, 5] and [24], the smallness condition for µ(ρ0) − 1 is in some sense
formulated as

‖µ(ρ0)− 1‖L∞
(
1 + ‖ρ0‖Bδ∞,∞

)
≤ ε0

for some δ > 0. In general, under the assumption that

(1.9) ‖µ(ρ0)− 1‖L∞ ≤ ε0

for some ε0 sufficiently small, Desjardins [17] only proved the global existence of strong
solutions for 2-D inhomogeneous Navier-Stokes system. Yet the uniqueness and regularities
of such strong solutions are still open.

(5) Let us emphasize that the idea of the derivation of pseudo-energy conservation introduced
by Desjardins in [17] also play a key role in the proof of Theorem 1.1. However, due to the
appearance of the diffusion term |D|θ in the θ equation of (1.1), the argument is much more
complicated here, which we shall explain in Section 2 for more details. Moreover, the basic
energy law (see (A.4) in the Appendix) to the System (1.1) grows like et as time t goes to
∞. To overcome this difficulty, we made some technical assumption for the low frequency
part of θ0 in Theorem 1.1 so that there holds (1.7).

We also have the following corollary:

Corollary 1.1. Under the assumptions of Theorem 1.1, we can replace the assumption (1.5) by
requiring that(

µ(·)− 1
)2

is a convex function of its variable and ‖µ(θ0)− 1‖L∞ ≤ ε0,(1.10)

then (1.1) still has a unique global solution (θ, u) which satisfy (1.6), (1.7) and (1.8).
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We remark that (1.10) works in particular for µ(θ) = 1 + θ, which is a physical shallow water
type viscosity, with ‖θ0‖L∞ ≤ ε0.

Let us complete this section with the notations we are going to use in this context.

Notations: Let A,B be two operators, we denote [A;B] = AB − BA, the commutator between
A and B. For a . b, we mean that there is a uniform constant C, which may be different on
different lines, such that a ≤ Cb. We shall denote by (a|b) (or (a|b)L2) the L2(R2) inner product
of a and b, and denote by (dj)j∈Z (resp. (cj)j∈Z) a generic element of `1(Z) (resp. `2(Z)) so that∥∥(dj)j∈Z

∥∥
`1(Z)

= 1 (resp.
∥∥(cj)j∈Z

∥∥
`2(Z)

= 1).

For X a Banach space and I an interval of R, we denote by C(I; X) the set of continuous
functions on I with values in X. For q ∈ [1,+∞], the notation Lq(I; X) stands for the set of
measurable functions on I with values in X, such that t 7−→ ‖f(t)‖X belongs to Lq(I). Finally
for any vector field v = (v1, v2), we denote d(v) = 1

2

(
∂ivj + ∂jvi

)
i,j=1,2

, and the Leray projection

operator P def
= Id+∇(−∆)−1div.

2. Strategies to the proof of Theorems 1.1

As the existence part of Theorems 1.1 basically follows from the a priori estimates for smooth
enough solutions of (1.1). We shall only outline the main steps in the derivation of the a priori
estimates.

The first step to prove Theorem 1.1 is to use Schonbek’s strategy in [28] (see also [30]) together
with the energy law of the System (1.1) to prove that under the assumptions of Theorem 1.1, there
holds (1.7) and

(2.1) ‖u‖L∞t (L2) + ‖∇u‖L2
t (L

2) ≤ CE0

for E0 given by (1.8).
While for any time interval I = [I−, I+] of R+, it follows, by a similar derivation of the conser-

vation of pseudo-energy for 2-D inhomogeneous Navier-Stokes system in [17], that

(2.2) ‖∇u‖2L∞(I;L2) +‖∂tu‖2L2(I;L2) ≤ C
(
1+‖∇u(I−)‖2L2

)
exp
(
CE2

0(1+E2
0)
)

exp
(
C‖∇θ‖2L2(I;L2)

)
.

In order to control the estimate of ‖∇θ‖L2(I;L2) on the right-hand side of (2.2), we get, by using

Ḣ1/2 energy estimate to the θ equation of (1.1), that

‖θ‖2
L̃∞(I;Ḣ1/2)

+ ‖θ‖2
L2(I;Ḣ1)

≤‖θ(I−)‖2
Ḣ1/2 + C‖∇u‖2L2(I;L2)

(
1 + ‖θ0‖2L2∩L∞

+ ‖θ0‖2L∞ ln
(
1 + ‖θ(I−)‖

B
1/2
p,∞

+ ‖θ0‖L∞‖∇u‖L2(I;Lp)

))
.

(2.3)

On the other hand, we deduce from div u = 0 that

(2.4) ∇u = ∇(−∆)−1divP
(
2(µ(θ)− 1)d

)
−∇(−∆)−1divP

(
2µ(θ)d

)
,

from which and (1.5), we achieve

(2.5) ‖∇u‖L2(I;Lp) ≤ CE0(1 + E0)
(
1 + ‖∇u‖L∞(I;L2) + ‖∂tu‖L2(I;L2)

)
∀p ∈ [4, p∗].

Substituting (2.3) and (2.5) into (2.2) gives rise to

‖∇u‖2L∞(I;L2) + ‖∂tu‖2L2(I;L2) ≤ CA(I−)
(

1 + ‖θ(I−)‖
B

1/2
p,∞

+ E0(1 + E0)‖θ0‖L∞
(
1 + ‖∇u‖L∞(I;L2) + ‖∂tu‖L2(I;L2)

))C‖θ0‖2L∞‖∇u‖2L2(I;L2) ,

(2.6)

for A(I−) given by (4.42). Therefore to close the estimate in (2.6), we need to prove that there is
no energy concentration on any small time interval I, which is the purpose of Lemma 4.4.



GLOBAL WELL-POSEDNESS OF 2-D BOUSSINESQ SYSTEM 5

With (2.6) and Lemma 4.4 in hand, one can deduce the global in time estimate of ‖∇u‖L∞t (L2)

and ‖∇u‖L2
t (L

p) for p ∈ [4, p∗] by a boot-strap argument. At this stage, by using Littlewood-Paley

theory, we can derive the estimate of ‖u‖L1
t (Ḃ

1
∞,1) for any t <∞.

With all these a priori estimates obtained in Section 4, we complete the existence part of Theorem
1.1 in Section 5 by smoothing the initial data and using a standard Lions-Aubin’s Lemma argument.
Finally the uniqueness part of Theorem 1.1 will be proved by an Osgood Lemma argument.

3. Littlewood-Paley analysis and preliminary estimates

3.1. Basic facts on Littlewood-Paley theory. The proof of Theorem 1.1 requires Littlewood-
Paley decomposition. Let us briefly explain how it may be built in the case x ∈ R2 (see e.g. [7]).

Let ϕ be a smooth function supported in the annulus C def
= {ξ ∈ R2, 3/4 ≤ |ξ| ≤ 8/3} and χ(ξ) be

a smooth function supported in the ball B def
= {ξ ∈ R2, |ξ| ≤ 4/3} such that∑

j∈Z
ϕ(2−jξ) = 1 for ξ 6= 0 and χ(ξ) +

∑
q≥0

ϕ(2−qξ) = 1 for all ξ ∈ R2 .

Then for u ∈ S ′h (see Definition 1.26 of [7]), which means u ∈ S ′ and limj→−∞ ‖χ(2−jD)u‖L∞ = 0,
we set

∀ j ∈ Z, ∆̇ju
def
= ϕ(2−jD)u and Ṡju

def
= χ(2−jD)u,

∀ q ≥ 0, ∆qu
def
= ϕ(2−qD)u, ∆−1u

def
= χ(D)u and

∀ q ≤ −2, ∆qu = 0, Squ
def
=

∑
−1≤q′≤q−1

∆q′u = χ(2−qD)u.

(3.1)

Then we have the formal decomposition

(3.2) u =
∑
j∈Z

∆̇j u, ∀u ∈ S ′h and u =
∑
q≥−1

∆q u ∀u ∈ S ′.

Moreover, the Littlewood-Paley decomposition satisfies the property of almost orthogonality:

(3.3) ∆̇j∆̇ku ≡ 0 if |j − k| ≥ 2 and ∆̇j(Ṡk−1u∆̇ku) ≡ 0 if |j − k| ≥ 5.

We recall now the definition of homogeneous Besov spaces, Ḃs
p,r, and Bernstein type inequalities

from [7]. Similar definition of Bs
p,r in the inhomogeneous context can be found in [7].

Definition 3.1 (Definition 2.15 of [7]). Let (p, r) ∈ [1,+∞]2, s ∈ R and u ∈ S ′h(R2), we set

‖u‖Ḃsp,r
def
=
(

2js‖∆̇ju‖Lp
)
`r
.

• For s < 2
p (or s = 2

p if r = 1), we define Ḃs
p,r(R2)

def
=
{
u ∈ S ′h(R2)

∣∣ ‖u‖Ḃsp,r <∞}.
• If k ∈ N and 2

p + k ≤ s < 2
p + k + 1 (or s = 2

p + k + 1 if r = 1), then Ḃs
p,r(R2) is defined as

the subset of distributions u ∈ S ′h(R2) such that ∂βu ∈ Ḃs−k
p,r (R2) whenever |β| = k.

In particular, when p = r = 2, we obtain the classical Sobolev space, namely, Ḣs = Ḃs
2,2.

Similarly, one has Hs = Bs
2,2.

Lemma 3.1. Let B be a ball and C an annulus of R2 . A constant C exists so that for any positive
real number δ, any non-negative integer k, any smooth homogeneous function σ of degree m, and
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any couple of real numbers (a, b) with b ≥ a ≥ 1, there hold

Supp û ⊂ δB ⇒ sup
|α|=k

‖∂αu‖Lb ≤ Ck+1δk+d( 1
a
− 1
b
)‖u‖La ,

Supp û ⊂ δC ⇒ C−1−kδk‖u‖La ≤ sup
|α|=k

‖∂αu‖La ≤ C1+kδk‖u‖La ,

Supp û ⊂ δC ⇒ ‖σ(D)u‖Lb ≤ Cσ,mδm+d( 1
a
− 1
b
)‖u‖La .

(3.4)

We also recall Bony’s decomposition from [8]:

uv = Tuv + T ′vu = Tuv + Tvu+R(u, v),(3.5)

where

Tuv
def
=
∑
j∈Z

Ṡj−1u∆̇jv, T ′vu
def
=
∑
j∈Z

Ṡj+2v∆̇ju,

R(u, v)
def
=
∑
j∈Z

∆̇ju
˙̃

∆jv with
˙̃

∆jv
def
=

∑
|j′−j|≤1

∆̇j′v.

In order to obtain a better description of the regularizing effect of the transport-diffusion equa-

tion, we need to use Chemin-Lerner type spaces L̃λT (Ḃs
p,r) from [7].

Definition 3.2. Let (r, λ, p) ∈ [1, +∞]3 and T ∈]0, +∞]. We define L̃λT (Ḃs
p r(R2)) as the comple-

tion of C([0, T ]; S(R2)) by the norm

‖f‖
L̃λT (Ḃsp,r)

def
=
(∑
j∈Z

2jrs
(∫ T

0
‖∆̇j f(t)‖λLp dt

) r
λ
) 1
r
<∞.

with the usual change if r =∞. For short, we just denote this space by L̃λT (Ḃs
p,r).

3.2. Preliminary estimates. As an application of the above basic facts on Littlewood-Paley
theory, we prove the following Lemmas:

Lemma 3.2. Let v, w be two smooth divergence free vector fields on [0, T ]×R2 and ζ,Θ be smooth
enough functions on [0, T ]× R2 which verify

(3.6)

{
∂tw + v · ∇w − div

(
2µ(Θ)d(w)

)
+∇Π = ζe2 + F,

w|t=0 = w0.

Then for p > 4, one has

‖w‖
L̃2
t (Ḃ

3/2
2,∞)
≤C
(
‖w0‖Ḃ1/2

2,∞
+ ‖ζ‖

L
4
3
t (L2)

+ ‖F‖
L̃2
t (Ḃ
−1/2
2,∞ )

+ ‖∇v‖L2
t (L

4)‖w‖L∞t (L2)

+ ‖µ(Θ)− 1‖L∞t (L∞)‖w‖L̃2
t (Ḃ

3/2
2,∞)

+ ‖Θ‖
p
p−4

L∞t (Ḃ
1/2
p,∞)
‖∇w‖L2

t (L
2)

)
.

(3.7)

Proof. We get, by first applying ∆̇j to (3.6) and then taking L2 inner product of the resulting

equation with ∆̇jw, that

1

2

d

dt
‖∆̇jw(t)‖2L2 + ‖∇∆̇jw‖2L2 =

(
[v · ∇; ∆̇j ]w | ∆̇jw

)
+ 2
(
div ∆̇j

(
(µ(Θ)− 1)d(w)

)
| ∆̇jw

)
+
(
∆̇jζe2 | ∆̇jw

)
+
(
∆̇jF | ∆̇jw

)
,

from which and Lemma 3.1, we infer

‖∆̇jw(t)‖L2 . e−c2
2jt‖∆̇jw0‖L2 +

∫ t

0
e−c2

2j(t−t′)
(∥∥[v · ∇; ∆̇j ]w(t′)‖L2

+ 2j
∥∥∆̇j

(
(µ(Θ)− 1)d(w)

)
(t′)‖L2 + ‖∆̇jζ(t′)‖L2 + ‖∆̇jF (t′)‖L2

)
dt′.
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In view of Definition 3.2, by taking L2 norm of the above inequality over [0, t], then multiplying

the resulting inequality by 2
3j
2 , and finally taking supreme of j over Z, we obtain

‖w‖
L̃2
t (Ḃ

3/2
2,∞)
. ‖w0‖Ḃ1/2

2,∞
+ sup

j∈Z
2−

j
2 ‖[∆̇j ; v · ∇]w‖L2

t (L
2)

+ ‖(µ(Θ)− 1)∇u‖
L̃2
t (Ḃ

1/2
2,∞)

+ ‖ζ‖
L̃
4/3
t (Ḃ0

2,∞)
+ ‖F‖

L̃2
t (Ḃ
−1/2
2,∞ )

.
(3.8)

Let us handle term by term above. It is easy to observe that

(3.9) ‖ζ‖
L̃

4
3
t (Ḃ0

2,∞)
≤ ‖ζ‖

L
4
3
t (L2)

.

Whereas by using Bony’s decomposition (3.5), one has

[∆̇j ; v · ∇]w = [∆̇j ;Tv · ∇]w + ∆̇jT
′
∇wv − T ′∆̇j∇w

v.

Applying the standard commutator’s estimate ([7]) and Lemma 3.1 yields

‖[∆̇j ;Tv · ∇]w(t′)‖L2 . 2−j
∑
|j′−j|≤4

‖Sj′−1∇v(t′)‖L∞‖∆̇j′∇w(t′)‖L2

. cj(t
′)2

j
2 ‖∇v(t′)‖L4‖w(t′)‖L2 .

While since div v = 0, we have T ′∇wv = div
(
T ′wv

)
, so that applying Lemma 3.1 gives rise to

‖∆̇jT
′
∇wv(t′)‖L2 .2j

∑
j′≥j−N0

‖Ṡj′+2w(t′)‖L4‖∆̇j′v(t′)‖L4

.2j
∑

j′≥j−N0

2−
j
2 cj′(t

′)‖w(t′)‖L2‖∇v(t′)‖L4

.cj(t
′)2

j
2 ‖∇v(t′)‖L4‖w(t′)‖L2 ,

and

‖T ′
∆̇j∇w

v(t′)‖L2 .
∑
j′≥j
‖Ṡj′+2∆̇j∇w(t′)‖L4‖∆̇j′v(t′)‖L4

. ‖∆̇j∇w(t′)‖L4

∑
j′≥j
‖∆̇j′v(t′)‖L4 . cj(t

′)2
j
2 ‖∇v(t′)‖L4‖w(t′)‖L2 .

We thus obtain by using Minkowski inequality that

sup
j∈Z

2−
j
2 ‖[∆̇j ; v · ∇]w‖L2

t (L
2) .

∥∥(2− j2 ‖[∆̇j ; v · ∇]w(t′)‖L2

)
`∞(Z)

∥∥
L2(0,t)

.
∥∥(2− j2 ‖[∆̇j ; v · ∇]w(t′)‖L2

)
`2(Z)

∥∥
L2(0,t)

.‖∇v‖L2
t (L

4)‖w‖L∞t (L2).

(3.10)

On the other hand, by using Bony’s decomposition (3.5) and para-product estimates ([7]), one
has

‖(µ(Θ)− 1)∇w‖
L̃2
t (Ḃ

1
2
2,∞)
. ‖µ(Θ)− 1‖L∞t (L∞)‖w‖

L̃2
t (Ḃ

3
2
2,∞)

+ ‖Θ‖
L∞t (Ḃ

1/2
p,∞)
‖∇w‖

L2
t (L

2p
p−2 )

.

However since p > 4, one has 2p
p−2 > 2 and

‖∇w‖
L2
t (L

2p
p−2 )
. ‖∇w‖L2

t (Ḃ
0
2p
p−2 ,2

) . ‖w‖L2
t (Ḣ

1+ 2
p )
. ‖∇w‖

1− 4
p

L2
t (L

2)
‖w‖

4
p

L̃2
t (Ḃ

3/2
2,∞)

,
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so that there holds

‖(µ(Θ)− 1)∇w‖
L̃2
t (Ḃ

1/2
2,∞)
≤ C

(
‖µ(Θ)− 1‖L∞t (L∞)‖w‖L̃2

t (Ḃ
3/2
2,∞)

+ ‖Θ‖
p
p−4

L∞t (Ḃ
1/2
p,∞)
‖∇w‖L2

t (L
2)

)
+

1

2
‖w‖

L̃2
t (Ḃ

3/2
2,∞)

.
(3.11)

Resuming (3.9), (3.10) and (3.11) into (3.8) leads to (3.7). This completes the proof of Lemma
3.2. �

Lemma 3.3. Let v be a smooth solenoidal vector field and Θ be a smooth enough function. Then
for s < 2, there holds

(3.12)
∑
j∈Z

2−js‖[∆̇j ; v · ∇]Θ‖L2 ≤ C‖Θ‖Ḣ1−s‖∇v‖L2 .

Proof. We first get, by using Bony’s decomposition (3.5), that

(3.13) [∆̇j ; v · ∇]Θ = [∆̇j ;Tv] · ∇Θ + ∆̇jT∇Θv + ∆̇jR(v,∇Θ)− T∇∆̇jΘ
v −R(v, ∆̇j∇Θ).

It follows from the classical commutator’s estimate (see [7]) and Lemma 3.1 that

‖[∆̇j ;Tv]∇Θ‖L2 . 2−j
∑
|j′−j|≤4

‖Ṡj′−1∇v‖L∞‖∆̇j′∇Θ‖L2

. dj2
js‖Θ‖Ḣ1−s‖∇v‖L2 .

Applying Lemma 3.1 once again gives

‖T∇∆̇jΘ
v‖L2 .

∑
j′≥j
‖Ṡj′−1∆̇j∇Θ‖L∞‖∆̇j′v‖L2

.
∑
j′≥j

2−j
′‖∆̇j′∇v‖L2‖∆̇j∇Θ‖L∞ . dj2js‖Θ‖Ḣ1−s‖∇v‖L2 ,

and

‖∆̇jT∇Θv‖L2 .
∑
|j′−j|≤4

‖Ṡj′−1∇Θ‖L∞‖∆̇j′v‖L2

.dj2
js‖Θ‖Ḣ1−s‖∇v‖L2 .

The same estimate holds for R(v, ∆̇j∇Θ). Finally as div v = 0, we write

(3.14) ∆̇jR(v,∇Θ) =
∑

j′≥j−3

2∑
k=1

∆̇j∂k(∆̇j′v
k ˜̇∆j′Θ),

since s < 2, we get, by applying Lemma 3.1, that

‖∆̇jR(v,∇Θ)‖L2 .22j
∑

j′≥j−3

‖∆̇j′v‖L2‖ ˜̇∆j′Θ‖L2

.dj2
js‖Θ‖Ḣ1−s‖∇v‖L2 .

This completes the proof of (3.12). �

Lemma 3.4. Let p > 2 and Θ ∈ Ḃ0
2p
p−2

,∞. Let v ∈ Ẇ 1,4 be a solenoidal vector filed. Then one has

(3.15) sup
j∈Z

2−
j
2 ‖[∆̇j ; v · ∇]Θ‖

L
2p
p−2
. ‖Θ‖Ḃ0

2p
p−2 ,∞

‖∇v‖L4 .
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Proof. By using Bony’s decomposition, we have (3.13). Applying Lemma 3.1 gives

‖Ṡj′−1∇v‖L∞ .
∑

k≤j′−2

2
k
2 ‖∆̇k∇v‖L4 . 2

j′
2 ‖∇v‖L4 ,

we thus deduce from the classical commutator’s estimate (see [7]) that

‖[∆̇j ;Tv]∇Θ‖
L

2p
p−2
. 2−j

∑
|j′−j|≤4

‖Ṡj′−1∇v‖L∞‖∆̇j′∇Θ‖
L

2p
p−2

. 2
j
2 ‖∇v‖L4‖Θ‖Ḃ0

2p
p−2 ,∞

.

While due to the support property of the Fourier transform to the term Ṡj′−1∆̇j∇Θ, and using
Lemma 3.1, one has

‖T∇∆̇jΘ
v‖

L
2p
p−2

.
∑
j′≥j
‖∆̇j∇Θ‖

L
2p
p−2
‖∆̇j′v(t′)‖L∞

. 2j‖Θ‖Ḃ0
2p
p−2 ,∞

∑
j′≥j

2−
j′
2 ‖∆̇j′∇v‖L4 . 2

j
2 ‖Θ‖Ḃ0

2p
p−2 ,∞

‖∇v‖L4 .

By the same manner, applying Lemma 3.1 once again gives rise to

‖∆̇jT∇Θv‖
L

2p
p−2
.

∑
|j′−j|≤4

2−
j′
2 ‖∆̇j′∇v‖L4

∑
k≤j′−2

2k‖∆̇kΘ‖
L

2p
p−2

.2
j
2 ‖Θ‖Ḃ0

2p
p−2 ,∞

‖∇v‖L4 .

The same estimate holds for R(v, ∆̇j∇Θ).
Finally since div v = 0, we have (3.14), from which and Lemma 3.1, we infer

‖∆̇jR(v,∇Θ)‖
L

2p
p−2
.2j

∑
j′≥j−3

‖∆̇j′v‖L∞‖ ˜̇∆j′Θ‖
L

2p
p−2

.2j
∑

j′≥j−3

2−
j′
2 ‖∆̇j′∇v‖L4‖ ˜̇∆j′Θ‖

L
2p
p−2
. 2

j
2 ‖Θ‖Ḃ0

2p
p−2 ,∞

‖∇v‖L4 .

Therefore in view of (3.13), we conclude the proof of (3.15). �

As consequence of the previous Lemma, we have following Proposition:

Proposition 3.1. Let p > 2 and Θ0 ∈ Ḃ0
2p
p−2

,∞, let v ∈ L2
T (Ẇ 1,4) be a solenoidal vector field and

f ∈ L̃2
t (Ḃ

−1/2
2p
p−2

,∞
). Then the equation below

(3.16) ∂tΘ + (v · ∇)Θ + |D|Θ = f and Θ|t=0 = Θ0,

has a unique solution Θ so that for t ≤ T

(3.17) ‖Θ‖L∞t (Ḃ0
2p
p−2 ,∞

) ≤ C
(
‖Θ0‖Ḃ0

2p
p−2 ,∞

+ ‖f‖
L2
t (Ḃ
−1/2
2p
p−2 ,∞

)

)
exp
(
C‖∇v‖L2

t (L
4)

)
.

Proof. As both the existence and uniqueness of solution to (3.16) essentially follows from the a
priori estimate (3.17). For the sake of simplicity, here we just present the detailed derivation of

(3.17) for smooth enough solutions of (3.16). We first get, by applying ∆̇j to the Θ equation

∂t∆̇jΘ + (v · ∇)∆̇jΘ + |D|∆̇jΘ = ∆̇jf + [∆̇j ; v · ∇]Θ.
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Taking the L2 inner product of the previous equation with |∆̇jΘ|
4
p−2 ∆̇jΘ and using the generalized

Bernstein inequality in [20, 31], we obtain

p− 2

2p

d

dt
‖∆̇jΘ(t)‖

2p
p−2

L
2p
p−2

+ c2j‖∆̇jΘ(t)‖
2p
p−2

L
2p
p−2

≤ C‖∆̇jθ(t)‖
p+2
p−2

L
2p
p−2

(
‖∆̇jf(t)‖

L
2p
p−2

+ ‖[∆̇j ; v · ∇]Θ‖
L

2p
p−2

)
.

(3.18)

Let J =: [J−, J+] be a subinterval of [0, T ]. Then for t ∈ J, we deduce from (3.18) that

‖∆̇jΘ(t)‖
L

2p
p−2
≤ C

(
e−ct2

j‖∆̇jΘ(J−)‖
L

2p
p−2

+

∫ t

J−
e−c(t−t

′)2j
(
‖∆̇jf‖

L
2p
p−2

+ ‖[∆̇j ; v · ∇]Θ‖
L

2p
p−2

)
(t′) dt′

)
,

which implies

‖Θ‖
L̃∞(J ;Ḃ0

2p
p−2 ,∞

)
≤ C

(
‖Θ(J−)‖Ḃ0

2p
p−2 ,∞

+ ‖f‖
L̃2(J ;Ḃ

−1/2
2p
p−2 ,∞

)

+ sup
j∈Z

2−
j
2 ‖[∆̇j ; v · ∇]Θ‖

L2(J ;L
2p
p−2 )

)
.

However applying Lemma 3.4 and Minkowski inequality gives

sup
j∈Z

2−
j
2 ‖[∆̇j ; v · ∇]Θ‖

L2(J ;L
2p
p−2 )

.
∥∥∥ sup
j∈Z

2−
j
2 ‖[∆̇j ; v · ∇]Θ‖

L
2p
p−2

∥∥∥
L2(J)

. ‖∇v‖L2(J ;L4)‖Θ‖L∞(J ;Ḃ0
2p
p−2 ,∞

).

We thus obtain

‖Θ‖
L̃∞(J ;Ḃ0

2p
p−2 ,∞

)
≤ C

(
‖Θ(J−)‖Ḃ0

2p
p−2 ,∞

+ ‖f‖
L2(J ;Ḃ

−1/2
2p
p−2 ,∞

)
+ ‖∇v‖L2(J ;L4)‖Θ‖L∞(J ;Ḃ0

2p
p−2 ,∞

)

)
.

Let us take |J | = J+ − J− to be so small that

C‖∇v‖L2(J ;L4) ≤ 1/2,

then we obtain

(3.19) ‖Θ‖
L̃∞(J ;Ḃ0

2p
p−2 ,∞

)
≤ 2C

(
‖Θ(J−)‖Ḃ0

2p
p−2 ,∞

+ ‖f‖
L2(J ;Ḃ

−1/2
2p
p−2 ,∞

)

)
.

Now let us decompose [0, t] into subintervals, Jk =
[
tk, tk+1

[
, k = 0, · · · ,M − 1 so that [0, t] =

∪M−1
k=0 Jk with t0 = 0, tM = t and

∀k ∈
{

0, 1, · · · ,M − 2
}
, C‖∇v‖L2(Jk;L4) = 1/2 and C‖∇v‖L2(JM−1;L4) ≤ 1/2.

Let us observe that

(3.20) M ≤ 2 + 2C‖∇v‖L2
t (L

4).

On the other hand, it follows from (3.19) that

‖Θ‖
L̃∞(Jk;Ḃ0

2p
p−2 ,∞

)
≤ 2C

(
‖Θ(tk)‖Ḃ0

2p
p−2 ,∞

+ ‖f‖
L2(Jk;Ḃ

−1/2
2p
p−2 ,∞

)

)
≤ 2C

(
‖Θ‖

L̃∞(Jk−1;Ḃ0
2p
p−2 ,∞

)
+ ‖f‖

L2(Jk;Ḃ
−1/2
2p
p−2 ,∞

)

)
.
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Inductively this gives rise to

‖Θ‖
L̃∞(Jk;Ḃ0

2p
p−2 ,∞

)
≤ (2C)k

(
‖Θ‖

L̃∞(J0;Ḃ0
2p
p−2 ,∞

)
+

k∑
`=0

‖f‖
L2(J`;Ḃ

−1/2
2p
p−2 ,∞

)

)
≤ (2C)k

(
‖Θ0‖Ḃ0

2p
p−2 ,∞

+
√
k‖f‖

L2(∪k`=0J`;Ḃ
−1/2
2p
p−2 ,∞

)

)
,

which together with (3.20) ensures (3.17). This completes the proof of the proposition. �

4. The key a priori Estimates

4.1. The basic energy estimate for θ and u. In this subsection, we shall present the time decay
estimate of ‖θ(t)‖L2 and the energy estimate for u.

Lemma 4.1. Let (θ, u) be a smooth enough solution of the System (1.1) on [0, T ∗[. Let h(·) ∈ C1

with h2(·) being convex function of its variable. Then we have

(4.1) ‖h(θ(t))‖Lp ≤ ‖h(θ0)‖Lp ∀ p ∈ [2,∞] and t < T ∗.

Proof. Since h2(·) is a convex function, we deduce from (1.1) of [13] that

1

2
|D|(h2(θ))(t, x) ≤ h(θ(t, x))h′(θ(t, x))|D|θ(t, x),

from which, we infer

(4.2) ∂th
2(θ) + u · ∇h2(θ) + |D|h2(θ) ≤ 2h(θ)h′(θ)

(
∂tθ + u · ∇θ + |D|θ

)
= 0.

While we get, by using a similar proof of Lemma 2.5 of [12], that∫
R2
|h(θ)|p−2|D|h2(θ) dx

=
1

2π
lim
ε→0

∫
R2

∫
|x−y|≥ε

|h(θ(t, x))|p−2h
2(θ(t, x))− h2(θ(t, y))

|x− y|3
dy dx

=− 1

2π
lim
ε→0

∫
R2

∫
|x−y|≥ε

|h(θ(t, y))|p−2h
2(θ(t, x))− h2(θ(t, y))

|x− y|3
dy dx

=
1

4π
lim
ε→0

∫
R2

∫
|x−y|≥ε

(
|h(θ(t, x))|p−2 − |h(θ(t, y))|p−2

) h2(θ(t, x))− h2(θ(t, y))

|x− y|3
dy dx ≥ 0,

for any p ∈ [2,∞[. Then for any p ∈ [2,∞[, multiplying (4.2) by p
2 |h(θ)|p−2 and integrating the

resulting inequality over R2, we obtain

d

dt
‖h(θ(t, ·))‖pLp +

∫
R2
u · ∇|h(θ)|p dx ≤ 0,

which together with div u = 0 ensures

‖h(θ(t, ·))‖Lp ≤ ‖h(θ0)‖Lp ∀ p ∈ [2,∞[,

which implies also (4.1) for p =∞. This completes the proof of the lemma. �

Proposition 4.1. Let q ∈]1, 2[ and s0 ∈
[
2/q − 1, 2(2/q − 1)

[
. Let (θ, u) be a smooth enough

solution of the System (1.1) on [0, T ∗[. We assume that (θ0, u0) ∈
(
Lq ∩L2∩ Ḣ−s0

)
×L2, then (1.7)

holds for any t < T ∗. If moreover, q ∈]1, 4/3[ and s0 ∈
]
1, 2(2/q−1)

[
, we have (2.1) for any t < T ∗.
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Proof. We first get, by taking L2 inner product of u equation of (1.1) with u, that

(4.3)
1

2

d

dt
‖u(t)‖2L2 +

∫
R2
µ(θ)d : d dx =

∫
R2
θu2 dx,

from which and (1.4), we deduce that for 1 < q < 2

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 ≤ ‖θ‖Lq‖u‖

L
q
q−1
≤ C‖θ‖Lq‖u‖

2(q−1)
q

L2 ‖∇u‖
2−q
q

L2

≤ C‖θ‖
2q

3q−2

Lq ‖u‖
4(q−1)
3q−2

L2 +
1

2
‖∇u‖2L2

t (L
2).

Applying Osgood’s Lemma gives(
‖u(t)‖2L2 + ‖∇u‖2L2

t (L
2)

) q
3q−2 ≤ ‖u0‖

2q
3q−2

L2 +
q

3q − 2

∫ t

0
‖θ(t′)‖

2q
3q−2

Lq dt′,

which implies

‖u‖2L∞t (L2) + ‖∇u‖2L2
t (L

2) ≤ ‖u0‖2L2 + C‖θ‖2
L

2q
3q−2
t (Lq)

.

Then by virtue of Lemma 4.1, we thus obtain

(4.4) ‖u‖L∞t (L2) + ‖∇u‖L2
t (L

2) ≤ C
(
‖u0‖L2 + ‖θ0‖Lq t

3q−2
2q
)
.

On the other hand, we get, by taking L2 inner product of the temperature equation in (1.1) with
θ, that

(4.5)
1

2

d

dt
‖θ(t)‖2L2 + ‖θ(t)‖2

Ḣ
1
2

= 0.

Motivated by Schonbek’s strategy for the classical Navier-Stokes system in [28] (see also [30]), we

split the phase-space R2 into two time-dependent regions S(t)
def
=
{
ξ ∈ R2, |ξ| ≤ g(t)

}
and Sc(t),

the complement of the set S(t) in R2, for some g(t) ∼ 〈t〉−1 to be determined hereafter. Then we
deduce from (4.5) that

(4.6)
d

dt
‖θ(t)‖2L2 + 2g(t)‖θ(t)‖2L2 ≤ 2g(t)

∫
S(t)
|θ̂(t, ξ)|2 dξ.

In order to deal with the source term in (4.6), we rewrite the θ equation of (1.1) as

θ̂(t, ξ) = e−t|ξ|θ̂0(ξ)−
∫ t

0
e−(t−t′)|ξ|ξ · Fx(θu)(t′, ξ) dt′.

Since θ0 ∈ Ḣ−s0(R2), one has∫
S(t)

∣∣e−t|ξ|θ̂0(ξ)
∣∣2 dξ ≤ 〈t〉−2s0‖θ0‖2H−s0 .

While it follows from Young’s inequality that∫
S(t)

∣∣∫ t

0
e−(t−t′)|ξ|ξ · Fx(θu)(t′, ξ) dt′

∣∣2 dξ ≤Cg4(t)
∥∥∥∫ t

0
e−(t−t′)|ξ|Fx(θu)(t′, ξ) dt′

∥∥∥2

L∞

≤Cg4(t)
(∫ t

0
‖(θu)(t′, ·)‖L1 dt′

)2

≤Cg4(t)‖θ‖2L∞t (Lq)‖u‖
2

L1
t (L

q
q−1 )

.
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However note from (4.4) that

‖u‖
L1
t (L

q
q−1 )
≤C〈t〉

3
2
− 1
q ‖u‖

L
2q
2−q
t (L

q
q−1 )

≤C〈t〉
3
2
− 1
q ‖u‖

2(q−1)
q

L∞t (L2)
‖∇u‖

2−q
q

L2
t (L

2)
≤ C

(
‖u0‖L2 + ‖θ0‖Lq

)
〈t〉3−

2
q .

This together with the fact: g(t) ∼ 〈t〉−1, ensures

(4.7)

∫
S(t)
|θ̂(t, ξ)|2 dξ ≤ C

(
〈t〉−2s0‖θ0‖2H−s0 + ‖θ0‖2Lq

(
‖u0‖L2 + ‖θ0‖Lq

)2〈t〉2− 4
q

)
.

Resuming the above estimate into (4.6) and using the assumption that s0 ≥ 2
q − 1, we obtain

d

dt
‖θ‖2L2 + 2g(t)‖θ‖2L2 ≤ CE2

0 〈t〉
1− 4

q

for E0 given by (1.8). Hence there holds

d

dt

(
‖θ(t)‖2L2 exp

(
2

∫ t

0
g(t′) dt′

))
≤ CE2

0 〈t〉
1− 4

q exp
(

2

∫ t

0
g(t′) dt′

)
.

Let us choose g(t) = α〈t〉−1 for α > 2/q − 1 in the above inequality to get

〈t〉2α‖θ(t)‖2L2 ≤ ‖θ0‖2L2 + CE2
0 〈t〉

2α+2− 4
q ,

which implies

(4.8) ‖θ(t)‖L2 ≤ CE0〈t〉1−
2
q for t ∈]0, T ∗[.

In view of (4.8) and (4.3), we write

‖u(t)‖L2 ≤ ‖u0‖L2 + ‖θ‖L1
t (L

2) ≤ ‖u0‖L2 + CE0〈t〉2−
2
q ≤ CE0〈t〉2−

2
q ,

so that thanks to (4.8), we get, by a similar derivation of (4.7), that∫
S(t)
|θ̂(t, ξ)|2dξ ≤ C

(
E2

0 〈t〉−2s0 + g(t)4
(∫ t

0
‖θ(t′)‖L2‖u(t′)‖L2 dt′

)2)
≤ C

(
E2

0 〈t〉−2s0 + E4
0g(t)4

(∫ t

0
〈t′〉3−

4
q dt′

)2)
≤ C

(
E2

0 〈t〉−2s0 + E4
0 〈t〉

4− 8
q

)
.

Substituting the above inequality into (4.6) and using the assumption that s0 ≤ 2
(
2/q − 1

)
, we

arrive at
d

dt
‖θ‖2L2 + 2g(t)‖θ‖2L2 ≤ CE2

0

(
1 + E2

0

)
〈t〉−1−2s0 = CE2

0〈t〉−1−2s0 .

Thus taking g(t) = α〈t〉−1 for α > s0 in the above inequality, we get, by using a similar derivation
of (4.8), that

〈t〉2α‖θ(t)‖2L2 ≤ C
(
‖θ0‖2L2 + E2

0〈t〉2α−2s0
)
.

Divided the above inequality by 〈t〉2α leads to (1.7) for t < T ∗.
By virtue of (1.7), if s0 ∈

]
1, 2
(
2/q − 1

)
[ for some q ∈

]
1, 4/3

[
, we get

(4.9) ‖θ‖L1
t (L

2) ≤ CE0,

from which and (4.3), we infer

‖u‖L∞t (L2) + ‖∇u‖L2
t (L

2) ≤ ‖u0‖L2 + C‖θ‖L1
t (L

2) ≤ CE0,

which ensures (2.1). This completes the proof of Proposition 4.1. �
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4.2. The derivative energy estimate for (θ, u). The purpose of this subsection is to prove the

Ḣ1/2 energy estimate for θ and Ḣ1 energy estimate for u.

Lemma 4.2. Let (θ, u) be a smooth enough solution of (1.1) on [0, T ∗[. Then under the assumptions
of Proposition 4.1, for any p > 4 and any t < T ∗, we have

(4.10) ‖θ‖
L∞t (B

1/2
p,∞)

+ ‖θ‖
L̃2
t (B

1
p,∞)
≤ ‖θ0‖B1/2

p,∞
+ C‖θ0‖L∞‖∇u‖L2

t (L
p),

and

‖θ‖2
L̃∞t (Ḣ1/2)

+ ‖θ‖2
L2
t (Ḣ

1)
≤Cp

(
‖θ0‖2Ḣ1/2 + E2

0

(
1 + ‖θ0‖2L2∩L∞

)
+ E2

0‖θ0‖2L∞ ln
(
e+ ‖θ0‖B1/2

p,∞
+ ‖θ0‖L∞‖∇u‖L2

t (L
p)

))(4.11)

where E0 is given by (1.8)

Proof. We first get, by applying ∆̇j to the θ equation of (1.1) and then taking the L2 inner product

of the resulting equation with ∆̇jθ, that

(4.12)
1

2

d

dt
‖∆̇jθ(t)‖2L2 +

(
|D|∆̇jθ(t) | ∆̇jθ(t)

)
L2 = −

(
∆̇j(u · ∇θ) | ∆̇jθ

)
L2 .

To estimate the term on the right hand-side of (4.12), we use Bony’s decomposition (3.5) to write

u · ∇θ = Tu∇θ + T∇θu+R(u,∇θ).
Applying Lemma 3.1 gives

‖∆̇j(T∇θu)(t)‖L2 .
∑
|j−`|≤4

‖Ṡ`−1∇θ(t)‖L∞‖∆̇`u(t)‖L2

.
∑
|j−`|≤4

‖Ṡ`−1θ(t)‖L∞‖∆̇`∇u(t)‖L2

.cj(t)‖θ(t)‖L∞‖∇u(t)‖L2 ,

and due to divu = 0, one has

‖∆̇j(R(u,∇θ)(t)‖L2 . 2j‖∆̇j(R(u, θ))(t)‖L2 .2j
∑
`≥j−3

‖∆̇`u(t)‖L2‖ ˙̃
∆`θ(t)‖L∞

.2j
∑
`≥j−3

c`(t)2
−`‖θ(t)‖L∞‖∇u(t)‖L2

.cj(t)‖θ(t)‖L∞‖∇u(t)‖L2 .

Whereas by using a standard commutator’s argument and divu = 0, we write(
∆̇j(Tu∇θ) | ∆̇jθ

)
L2 =

∑
|j−`|≤4

((
[∆̇j ; Ṡ`−1u]∇∆̇`θ | ∆̇jθ

)
L2

+
(
(Ṡ`−1u− Ṡj−1u) · ∇∆̇`∆̇jθ | ∆̇jθ

)
L2

)
.

It follows from the commutator’s estimate ([7]) that∑
|j−`|≤4

∣∣([∆̇j ; Ṡ`−1u]∇∆̇`θ | ∆̇jθ
)
L2

∣∣ .2−j
∑
|j−`|≤4

‖Ṡ`−1∇u(t)‖L2‖∆̇`∇θ(t)‖L∞‖∆̇jθ(t)‖L2

.c2
j (t)2

−j‖∇u(t)‖L2‖θ(t)‖Ḃ0
∞,2
‖∇θ(t)‖L2 .

While applying Lemma 3.1 leads to∑
|j−`|≤4

∣∣((Ṡ`−1u− Ṡj−1u) · ∇∆̇`∆̇jθ) | ∆̇jθ
)
L2

∣∣ . c2
j (t)2

−j‖∇u(t)‖L2‖θ(t)‖L∞‖∇θ(t)‖L2 .
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As a consequence, we obtain∣∣(∆̇j(u · ∇θ) | ∆̇jθ
)
L2

∣∣ . c2
j (t)2

−j‖∇u(t)‖L2

(
‖θ(t)‖L∞ + ‖θ(t)‖Ḃ0

∞,2

)
‖∇θ(t)‖L2 .

Substituting the above estimate into (4.12), and integrating the resulting inequality over [0, t], we
infer

(4.13) ‖θ‖2
L̃∞t (Ḣ1/2)

+ ‖θ‖2
L2
t (Ḣ

1)
≤ ‖θ0‖2Ḣ1/2 + C

(
‖θ‖2L∞t (L∞) + ‖θ‖2

L∞t (Ḃ0
∞,2)

)
‖∇u‖2L2

t (L
2).

On the other hand, for any p ∈ [1,∞[, we deduce from the proof of Theorem 4.2 of [23] that for
any q ≥ −1,

‖∆qθ(t)‖Lp ≤ ‖∆qθ0‖Lp exp
(
−ct2q

)
+ C‖θ0‖L∞

∫ t

0
exp
(
−c(t− t′)2q

)
‖∇u(t′)‖Lp dt′,

which implies

‖∆qθ‖L∞t (Lp) + 2
q
2 ‖∆qθ‖L2

t (L
p) ≤C

(
‖∆qθ0‖Lp + 2−

q
2 ‖θ0‖L∞‖∇u‖L2

t (L
p)

)
≤C2−

q
2
(
‖θ0‖B1/2

p,∞
+ ‖θ0‖L∞‖∇u‖L2

t (L
p)

)
.

This gives rise to (4.10).
Note that for any positive integer N and p > 4, we write

‖θ‖L∞t (Ḃ0
∞,2) ≤‖θ‖L∞t (L2) +

( ∑
1≤q≤N

‖∆qθ‖2L∞t (L∞)

) 1
2

+
(∑
q>N

‖∆qθ‖2L∞t (L∞)

) 1
2

≤‖θ0‖L2 + ‖θ0‖L∞
√
N + 2

−N
(

1
2
− 2
p

)
‖θ‖

L̃∞t (B
1/2
p,∞)

.

Taking N in the above inequality so that

2
N
(

1
2
− 2
p

)
∼ ‖θ‖

L̃∞t (B
1/2
p,∞)

,

we obtain for any p > 4

‖θ‖L∞t (Ḃ0
∞,2) ≤ Cp

(
1 + ‖θ0‖L2 + ‖θ0‖L∞ ln

1
2
(
e+ ‖θ‖

L̃∞t (B
1/2
p,∞)

))
,

which together with (4.10) implies that

‖θ‖L∞t (Ḃ0
∞,2) ≤ Cp

(
1 + ‖θ0‖L2 + ‖θ0‖L∞ ln

1
2
(
e+ ‖θ0‖B1/2

p,∞
+ ‖θ0‖L∞‖∇u‖L2

t (L
p)

))
.(4.14)

Resuming the above inequality into (4.13) leads to

‖θ‖2
L̃∞t (Ḣ1/2)

+ ‖θ‖2
L2
t (Ḣ

1)
≤ ‖θ0‖2Ḣ1/2 + Cp‖∇u‖2L2

t (L
2)

(
1 + ‖θ0‖2L2∩L∞

+ ‖θ0‖2L∞ ln
(
e+ ‖θ0‖B1/2

p,∞
+ ‖θ0‖L∞‖∇u‖L2

t (L
p)

))
,

from which and (2.1), we infer (4.11). This completes the proof of Lemma 4.2. �

Lemma 4.3. Let (θ, u) be a smooth enough solution of (1.1) on [0, T ∗[. Then under the assumptions
of Proposition 4.1 and (1.5), one has for all t ∈ [0, T ∗[ and p ∈]4, p∗]

‖∇u‖2L∞t (L2) + ‖∂tu‖2L2
t (L

2) ≤ CC0

(
1 + ‖θ0‖B1/2

p,∞
+ ‖θ0‖L∞‖∇u‖L2

t (L
p)

)δ1 ,(4.15)

where p∗ is given by (1.4), C0 and δ1 are given by

C0
def
=
(
E2

0 + ‖∇u0‖2L2

)
exp

(
C
(
‖θ0‖2Ḣ1/2 + E2

0

(
1 + ‖θ0‖2L2∩L∞ + E2

0

)))
and

δ1
def
=C‖θ0‖2L∞E2

0 for E0 given by (1.8).

(4.16)
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Proof. The proof of this lemma is motivated by that of Theorem 1 in [17] and that of Proposition
2.1 of [5]. In fact, by taking the L2 inner product of the momentum equation of (1.1) with ∂tu, we
write

(4.17)

∫
R2
|∂tu|2 dx−

∫
R2

div
(
2µ(θ)d

)
| ∂tu dx = −

∫
R2
∂tu |

(
u · ∇u

)
dx+

∫
R2
θ∂tu2 dx.

Motivated by the derivation of (29) in [17], we get, by using integration by parts, that

−
∫
R2

div
(
2µ(θ)d

)
| ∂tu dx =

∫
R2

2µ(θ)d : ∂td dx

=
d

dt

∫
R2
µ(θ)d : d dx−

∫
R2
∂t
(
µ(θ)

)
d : d dx.

Using the θ equation of (1.1) and then integration by parts, we get

−
∫
R2
∂t
(
µ(θ)

)
d : d dx =

∫
R2

(
u · ∇µ(θ) + µ′(θ)|D|θ

)
d : d dx

=−
∫
R2
u · ∇

(
µ(θ)

)−1
(µ(θ)d) : (µ(θ)d) dx+

∫
R2
µ′(θ)

(
|D|θ

)
d : d dx

=
2∑
i=1

∫
R2
uid : ∂i

(
2µ(θ)d

)
dx+

∫
R2
µ′(θ)

(
|D|θ

)
d : d dx.

Note that
2∑
i=1

∫
R2
uid : ∂i

(
2µ(θ)d

)
dx =

∑
1≤i,k,`≤2

∫
R2
ui∂ku`∂i

(
2µ(θ)dk`

)
dx

= −
∑

1≤i,k,`≤2

(∫
R2
∂kuiu`∂i

(
2µ(θ)dk`

)
dx+

∫
R2
uiu`∂i∂k

(
2µ(θ)dk`

)
dx
)
.

Hence due to div u = 0, we obtain∫
R2
|∂tu|2 dx+

d

dt

∫
R2
µ(θ)d : d dx = −

∫
R2
∂tu |

(
u · ∇u

)
dx

+

∫
R2
θ∂tu2 dx−

∑
1≤i,k,`≤2

2

∫
R2
µ(θ)∂kui∂iu`dk,` dx

−
∑

1≤i,k,`≤2

∫
R2
ui ∂iu` ∂k

(
2µ(θ)dk`

)
dx−

∫
R2
µ′(θ)

(
|D|θ

)
d : d dx,

which together with the momentum equation of (1.1) implies that∫
R2
|∂tu|2 dx+

d

dt

∫
R2
µ(θ)d : d dx

≤‖∂tu‖L2‖u · ∇u‖L2 + ‖θ‖L2‖∂tu2‖L2 −
∫
R2
µ′(θ)

(
|D|θ

)
d : d dx

−
∫
R2
u · ∇u |

(
∂tu+ u · ∇u+∇Π− θe2

)
dx−

∑
1≤i,k,`≤2

2

∫
R2
µ(θ)∂kui∂iu`dk,` dx.

This gives∫
R2
|∂tu|2 dx+

d

dt

∫
R2
µ(θ)d : d dx ≤ C

(
‖u · ∇u‖2L2

+
(
‖∇θ‖L2 + ‖∇u‖L2

)
‖∇u‖2L4 + ‖θ‖2L2

)
−
∫
R2
u · ∇u | ∇Π dx+

1

4
‖∂tu‖2L2 .
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Integrating the above inequality over [0, t] and using once again divu = 0, we infer

3

4
‖∂tu‖2L2

t (L
2)+‖∇u(t)‖2L2 ≤ C

(
‖∇u0‖2L2 + ‖θ‖2L2

t (L
2) +

∫ t

0
‖u · ∇u‖2L2 dt

′

+

∫ t

0

(
‖∇θ‖L2 + ‖∇u‖L2

)
‖∇u‖2L4 dt

′ +
2∑

i,k=1

∫ t

0

∫
R2

Π∂iu
k∂ku

i dx dt′
)
.

(4.18)

To deal with the pressure function Π, we get, by taking space divergence to the momentum equation
of (1.1), that

(4.19) Π = (−∆)−1div⊗ div
(
2µ(θ)d

)
− (−∆)−1div

(
u · ∇u− θe2

)
,

from which, we deduce∣∣∣ 2∑
i,k=1

∫
R2

Π∂iu
k∂ku

i dx
∣∣∣ . ‖∇u‖L2‖∇u‖2L4

+ ‖(−∆)−1div
(
u · ∇u− θe2

)
‖BMO

∥∥∥ 2∑
i,k=1

∂iu
k∂ku

i
∥∥∥

H 1
,

where ‖f‖H 1 denotes the Hardy norm of f. Yet as divu = 0, it follows from [11] that∥∥∥ 2∑
i,k=1

∂iu
k∂ku

i
∥∥∥

H 1
. ‖∇u‖2L2 ,

and ‖f‖BMO(R2) . ‖∇f‖L2(R2), we obtain∣∣∣ 2∑
i,k=1

∫
R2

Π∂iu
k∂ku

i dx
∣∣∣ .‖∇u‖L2‖∇u‖2L4 + ‖u · ∇u− θe2‖L2‖∇u‖2L2 ,

from which, and ‖u‖2L4 . ‖u‖L2‖∇u‖L2 , we deduce from (4.18) that

(4.20)

3

4
‖∂tu‖2L2

t (L
2) + ‖∇u(t)‖2L2 ≤ C

(
‖∇u0‖2L2 + ‖θ‖2L2

t (L
2)

+

∫ t

0
‖∇u‖2L2‖∇u‖2L2 dt

′ +

∫ t

0

(
(1 + ‖u‖L2)‖∇u‖L2 + ‖∇θ‖L2

)
‖∇u‖2L4 dt

′
)
.

On the other hand, by virtue of (2.4), and

(4.21) ‖a‖Lp ≤ C
√
p‖a‖

2
p

L2‖∇a‖
1− 2

p

L2 for p ∈ [2,∞[,

we infer

‖∇u‖Lp ≤ C
(
p‖µ(θ)− 1‖L∞‖∇u‖Lp +

√
p‖∇u‖

2
p

L2‖Pdiv
(
2µ(θ)d

)
‖

1− 2
p

L2

)
Taking ε0 sufficiently small in (1.5), we obtain for p ∈

[
2, p∗

]
‖∇u‖Lp ≤C

√
p‖∇u‖

2
p

L2‖∂tu+ (u · ∇)u− θe2‖
1− 2

p

L2

≤C√p‖∇u‖
2
p

L2

(
‖∂tu‖

1− 2
p

L2 + ‖u‖
1− 2

p

L4 ‖∇u‖
1− 2

p

L4 + ‖θ‖
1− 2

p

L2

)
.

(4.22)

In particular taking p = 4 in (4.22) and using Young’s inequality yields

(4.23) ‖∇u‖2L4 ≤ C
(
‖∇u‖L2‖∂tu‖L2 + ‖u‖L2‖∇u‖3L2 + ‖∇u‖L2‖θ‖L2

)
.
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Substituting (4.23) into (4.20), we obtain

(4.24)

‖∂tu‖2L2
t (L

2) + ‖∇u(t)‖2L2 ≤ C
(
‖∇u0‖2L2 + ‖θ‖2L2

t (L
2)

+

∫ t

0

(
(1 + ‖u‖2L2)‖∇u‖2L2 + ‖∇θ‖2L2

)
‖∇u‖2L2 dt

′
)
.

Note from (1.7) that

(4.25) ‖θ‖L2
t (L

2) . E0.

Applying Gronwall’s Lemma to (4.24) gives

‖∇u‖2L∞t (L2)+‖∂tu‖
2
L2
t (L

2) ≤ C
(
‖∇u0‖2L2 + E2

0

)
× exp

(
C

∫ t

0

(
(1 + ‖u‖2L2)‖∇u‖2L2 + ‖∇θ‖2L2

)
(t′) dt′

)
≤C
(
E2

0 + ‖∇u0‖2L2

)
exp
(
CE2

0(1 + E2
0)
)

exp
(
C‖∇θ‖2L2

t (L
2)

)
.

(4.26)

Substituting (4.11) into the above inequality leads to (4.15). This completes the proof of the
lemma. �

An immediate consequence of Lemma 4.3 is the following Corollary concerning the estimates of
Ḣ1 energy estimate for u and of ‖∇u‖L2

t (L
p).

Corollary 4.1. Under the assumptions of Lemma 4.3, we assume further that δ1 given by (4.16)
satisfies

(4.27) δ1 ≤ 1.

Then for any t ∈]0, T ∗[, one has

(4.28)
‖∇u‖2L∞t (L2) + ‖∂tu‖2L2

t (L
2) ≤ CC0

(
1 + ‖θ0‖B1/2

p,∞
+ C0pE

2
0(1 + E0)

2
(

1− 2
p

)
‖θ0‖2L∞

)
def
= C2

p,1,

‖∇u‖L2
t (L

p) ≤ C
√
pE0(1 + E0)

1− 2
p
(
1 + Cp,1

)
.

Proof. We first deduce from (2.1), (4.23) and (4.25) that

‖∇u‖L2
t (L

4) ≤C
(
‖∇u‖

1
2

L2
t (L

2)
‖∂tu‖

1
2

L2
t (L

2)
+ ‖u‖

1
2

L∞t (L2)
‖∇u‖

1
2

L∞t (L2)
‖∇u‖L2

t (L
2)

+ ‖∇u‖
1
2

L2
t (L

2)
‖θ‖

1
2

L2
t (L

2)

)
≤C(1 + E0)E

1
2
0

(
1 + ‖∂tu‖

1
2

L2
t (L

2)
+ ‖∇u‖

1
2

L∞t (L2)

)
,

(4.29)

from which and (4.22), we infer

‖∇u‖L2
t (L

p) ≤C
√
p‖∇u‖

2
p

L2
t (L

2)

(
‖∂tu‖

1− 2
p

L2
t (L

2)
+ ‖u‖

1− 2
p

L∞t (L4)
‖∇u‖

1− 2
p

L2
t (L

4)
+ ‖θ‖

1− 2
p

L2
t (L

2)

)
≤C√pE0(1 + E0)

1− 2
p
(
1 + ‖∂tu‖L2

t (L
2) + ‖∇u‖L∞t (L2)

)
.

(4.30)

Resuming the Estimate (4.30) into (4.15), we write

‖∇u‖2L∞t (L2) + ‖∂tu‖2L2
t (L

2) ≤ CC0

(
1 + ‖θ0‖B1/2

p,∞

+
√
pE0(1 + E0)

1− 2
p ‖θ0‖L∞

(
1 + ‖∂tu‖L2

t (L
2) + ‖∇u‖L∞t (L2)

))δ1
.

(4.31)

In particular, under the assumption of (4.27), we deduce the first inequality of (4.28) from (4.31).
Substituting the first inequality of (4.28) into (4.30), we obtain the second inequality of (4.28).

This completes the proof of the Corollary. �
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To prove the general global in time a priori Ḣ1 energy estimate for u without the restriction
(4.27), we need the following lemma concerning the non-concentration of energy in the time variable:

Lemma 4.4. Let (θ, u) be a smooth enough solution of the System (1.1) on [0, T ∗[. Then under
the assumptions of Proposition 4.1, one has for all t ∈ [0, T ∗[

(4.32) ‖u‖
L̃∞t (L2)

≤ CE0(1 + E0)

for E0 given by (1.8). If moreover, there holds (1.5), then for any small enough constant κ > 0,
there exists λ > 0 such that if 0 ≤ t1 < t2 < T ∗ and t2 − t1 ≤ λ, there holds

(4.33) ‖∇u‖L2([t1,t2];L2) ≤ κ.

Proof. We first get, by applying ∆̇j to the u equation of (1.1), that

(4.34) ∂t∆̇ju+ (u · ∇)∆̇ju−∆∆̇ju+∇∆̇jΠ = [u · ∇, ∆̇j ]u+ div∆̇j

(
(µ(θ)− 1)2d

)
+ ∆̇jθe2.

Taking L2 inner product of the previous equation with ∆̇ju and using Lemma 3.1, we obtain

(4.35)

1

2

d

dt
‖∆̇ju‖2L2+c22j‖∆̇ju‖2L2 ≤ ‖∆̇ju‖L2

×
(
‖[∆̇j ;u · ∇]u‖L2 + C2j‖∆̇j

(
(µ(θ)− 1)∇u

)
‖L2 + ‖∆̇jθ‖L2

)
,

which gives rise to

‖∆̇ju(t)‖L2 .e−c2
2jt‖∆̇ju0‖L2 +

∫ t

0
e−c2

2j(t−t′)(‖[∆̇j ;u · ∇]u‖L2

+ ‖∆̇jθ‖L2

)
(t′) dt′ + C2j

∫ t

0
e−c2

2j(t−t′)‖∆̇j

(
(µ(θ)− 1)∇u

)
(t′)‖L2 dt′.

Taking L∞(0, t) norm with respect to time t and then taking `2(Z) norm to the resulting inequality,
we get

(4.36)

‖u‖
L̃∞t (L2)

.‖u0‖L2 +
(∑
j∈Z
‖[∆̇j ;u · ∇]u‖2L1

t (L
2)

) 1
2

+ ‖(µ(θ)− 1)∇u‖L2
t (L

2) +
(∑
j∈Z
‖∆̇jθ‖2L1

t (L
2)

) 1
2
.

Note from (1.4) and (2.1) that

‖(µ(θ)− 1)∇u‖L2
t (L

2) ≤ ‖(µ(θ)− 1)‖L∞t (L∞)‖∇u‖L2
t (L

2) ≤ CE0.

While it follows from Minkowski inequality and the Inequality (4.9) that(∑
j∈Z
‖∆̇jθ‖2L1

t (L
2)

) 1
2 ≤ ‖θ‖L1

t (L
2) ≤ CE0.

Finally similar to the proof of Lemme A.1 of [14], we use Bony’s decomposition to write

[∆̇j ;u · ∇]u = [∆̇j ;Tu · ∇]u+ ∆̇jT∇uu− T∆̇j∇uu+ ∆̇jR(u,∇u)−R(u, ∆̇j∇u).

Applying commutator’s estimate ([7]) gives

‖[∆̇j ;Tu · ∇]u‖L1
t (L

2) .2−j
∑
|j′−j|≤4

‖Sj′−1∇u‖L2
t (L
∞)‖∆̇j′∇u‖L2

t (L
2)

.
∑
|j′−j|≤4

cj‖∇u‖L2
t (L

2)‖∆̇j′∇u‖L2
t (L

2)

.dj‖∇u‖2L2
t (L

2).
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Similarly, one has

‖∆̇jT∇uu‖L2
t (L

2) .
∑
|j′−j|≤4

‖Sj′−1∇u‖L2
t (L
∞)‖∆̇j′u‖L2

t (L
2)

. dj‖∇u‖2L2
t (L

2).

The same estimate holds for T∆̇j∇uu. While since div u = 0, applying Lemma 3.1 yields

‖∆̇jR(u,∇u)‖L2
t (L

2) . ‖ div ∆̇jR(u, u)‖L2
t (L

2)

. 22j
∑

j′≥j−3

‖∆̇ju‖L2
t (L

2)‖
˙̃

∆ju‖L2
t (L

2) . dj‖∇u‖2L2
t (L

2).

The same estimate holds for R(u, ∆̇j∇u). We thus obtain

(4.37)
(∑

q

‖[∆̇j ;u · ∇]u‖2L1
t (L

2)

) 1
2
. ‖∇u‖2L2

t (L
2).

Resuming the above estimates into (4.36) and using (2.1) leads to (4.32).
Along the same line, for any 0 ≤ t1 < t2 < T ∗, we deduce from (4.35) that

‖∇u‖L2(t1,t2;L2) .
(∑
j∈Z

(
1− e−2c22j(t2−t1)

)
‖∆̇ju(t1)‖2L2

) 1
2

+
(∑
j∈Z
‖∆̇jθ‖2L1(t1,t2;L2)

) 1
2

+
(∑
j∈Z
‖[∆̇j ;u · ∇]u‖2L1(t1,t2;L2)

) 1
2

+ ‖
(
µ(θ)− 1

)
∇u‖L2(t1,t2;L2),

from which, and (4.37), we infer

‖∇u‖L2(t1,t2;L2) .
(∑
j∈Z

(
1− e−2c22j(t2−t1)

)
‖∆̇ju(t1)‖2L2

) 1
2

+ ‖θ‖L1(t1,t2;L2)

+ ‖µ(θ)− 1‖L∞‖∇u‖L2(t1,t2;L2) + ‖∇u‖2L2(t1,t2;L2).

So that under the assumption of (1.5), one has

(4.38)
‖∇u‖L2(t1,t2;L2) .

(∑
j∈Z

(
1− e−2c22j(t2−t1)

)
‖∆̇ju(t1)‖2L2

) 1
2

+ ‖∇u‖2L2(t1,t2;L2) + (t2 − t1)‖θ0‖L2 .

Note that for any integer N, one has(∑
j∈Z

(
1− e−2c22j(t2−t1)

)
‖∆̇ju(t1)‖2L2

) 1
2 ≤

( ∑
|j|≥N

‖∆̇ju(t1)‖2L2

) 1
2

+
( ∑
|j|<N

(
1− e−2c22j(t2−t1)

)
‖∆̇ju(t1)‖2L2

) 1
2
.

Yet by virtue of (4.32), for any η > 0, there exists some N0 so that there holds( ∑
|j|≥N0

‖∆̇ju(t1)‖2L2

) 1
2 ≤

( ∑
|j|≥N0

‖∆̇ju‖2L∞(R+;L2)

) 1
2 ≤ η

3

and ( ∑
|j|<N0

(
1− e−2c22j(t2−t1)

)
‖∆̇qu(t1)‖2L2

) 1
2 ≤ CE0(1 + E0)

√
t2 − t12N0 .
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If λ is taken so small that CE0(1 + E0)
√
λ2N0 ≤ η

3 and Cλ‖θ0‖L2 ≤ η
3 , then we infer from (4.38)

that

‖∇u‖L2(t1,t2;L2) ≤ η + C‖∇u‖2L2(t1,t2;L2),

which implies

either ‖∇u‖L2(t1,t2;L2) ≥
1 +
√

1− 4Cη

2C

or ‖∇u‖L2(t1,t2;L2) ≤
1−
√

1− 4Cη

2C
=

2η

1 +
√

1− 4Cη
≤ 2η,

provided that η is so small that Cη ≤ 1
4 . Since when t2 = t1, one has ‖∇u‖L2(t1,t2;L2) = 0, we get,

by applying the absolute continuity of L1 functions, that

‖∇u‖L2([t1,t2;L2) ≤ 2η,

which implies (4.33). This concludes the proof of Lemma 4.4. �

Now let us turn to the key estimates in this subsection:

Proposition 4.2. Let (θ, u) be a smooth enough solution of the System (1.1) on [0, T ∗[. Then
under the assumptions of Proposition 4.1 and (1.5) for some sufficiently small ε0, for any t < T ∗

and p ∈ [4, p∗], one has

‖θ‖2
L̃∞t (Ḣ1/2)

+ ln
(
1 + ‖θ‖2

L∞t (B
1/2
p,∞)

)
+ ‖θ‖2

L2
t (Ḣ

1)

≤ C2+C‖θ0‖2L∞E
2
0

(
A+ B + ‖θ0‖2Ḣ1/2 + ln

(
1 + ‖θ0‖2

B
1/2
p,∞

+ ‖∇u0‖2L2

)) def
= G1,

(4.39)

and

‖∇u‖2L∞t (L2) + ‖∂tu‖2L2
t (L

2) ≤C
(
1 + ‖∇u0‖2L2

)
exp
(
C
(
E2

0(1 + E2
0) + G1

)) def
= G2,

‖∇u‖L2
t (L

p) ≤CE0(1 + E0)
1− 2

p
(
1 +

√
G2

) def
= G3,

(4.40)

where the constants A,B are defined by

A def
=CE2

0

(
1 + E2

0 + ‖θ0‖2L2∩L∞
)
,

B def
=A+ CE2

0‖θ0‖2L∞ ln
(
1 + CE0(1 + E0)‖θ0‖L∞

)
.

(4.41)

Proof. Let us first consider any subinterval I = [I−, I+] of [0, T ∗[. Then a similar proof of (4.26)
ensures (2.2). While it follows from Lemma 4.1 that

‖θ‖L∞t (L∞) ≤ ‖θ0‖L∞ ,

so that we deduce by a similar proof of (4.13) that

‖θ‖2
L̃∞(I;Ḣ1/2)

+ ‖θ‖2
L2(I;Ḣ1)

≤‖θ(I−)‖2
Ḣ1/2 + C‖∇u‖2L2(I;L2)

(
‖θ‖2L∞(I;L∞) + ‖θ‖2

L∞(I;Ḃ0
∞,2)

)
≤‖θ(I−)‖2

Ḣ1/2 + C‖∇u‖2L2(I;L2)

(
‖θ0‖2L∞ + ‖θ‖2

L∞(I;Ḃ0
∞,2)

)
,

which together with (4.14) implies (2.3). Resuming (2.3) into (2.2) and using (2.1), we obtain

‖∇u‖2L∞(I;L2) + ‖∂tu‖2L2(I;L2)

≤ CA(I−)
(
1 + ‖θ(I−)‖

B
1/2
p,∞

+ ‖θ0‖L∞‖∇u‖L2(I;Lp)

)C‖θ0‖2L∞‖∇u‖2L2(I;L2) ,

where

(4.42) A(I−)
def
=
(
1 + ‖∇u(I−)‖2L2

)
exp
(
CE2

0

(
1 + E2

0 + ‖θ0‖2L2∩L∞
)

+ C‖θ(I−)‖2
Ḣ1/2

)
.
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On the other hand, we deduce from the proof of (4.30) that there holds (2.5). Whence we obtain
(2.6). However, by virtue of Lemma 4.4, we can take |I| = I+ − I− to be so small that

C‖θ0‖2L∞‖∇u‖2L2(I;L2) ≤ 1.

Then we infer from (2.6) that

‖∇u‖2L∞(I;L2) + ‖∂tu‖2L2(I;L2)

≤C
(
1 + ‖θ(I−)‖2

B
1/2
p,∞

+ (1 + E2
0(1 + E2

0)‖θ0‖2L∞)A2(I−)
)

≤C
(

1 + ‖θ(I−)‖2
B

1/2
p,∞

+
(
1 + ‖∇u(I−)‖2L2

)2
× exp

(
2CE2

0

(
1 + E2

0 + ‖θ0‖2L2∩L∞
)

+ 2C‖θ(I−)‖2
Ḣ1/2

))
.

(4.43)

Taking ln to (4.43) yields

ln
(
1 + ‖∇u‖2L∞(I;L2) + ‖∂tu‖2L2(I;L2)

)
≤ 1

2
A+ C

(
‖θ(I−)‖2

Ḣ1/2 + ln
(
1 + ‖θ(I−)‖2

B
1/2
p,∞

+ ‖∇u(I−)‖2L2

))
,

(4.44)

for A given by (4.41).
Whereas substituting the Estimate (4.43) into (2.5) leads to

‖∇u‖L2(I;Lp) ≤CE0(1 + E0)
(
1 + ‖θ(I−)‖

B
1/2
p,∞

)
+ C

(
1 + ‖∇u(I−)‖2L2

)
× exp

(
CE2

0

(
1 + E2

0 + ‖θ0‖2L2∩L∞
)

+ C‖θ(I−)‖2
Ḣ1/2

)
,

(4.45)

from which and (2.3), we infer

(4.46) ‖θ‖2
L̃∞(I;Ḣ1/2)

+ ‖θ‖2
L2(I;Ḣ1)

≤ B + C
(
‖θ(I−)‖2

Ḣ1/2 + ln
(
1 + ‖θ(I−)‖2

B
1/2
p,∞

+ ‖∇u(I−)‖2L2

))
,

for B given by (4.41).
By the same manner, we infer from (4.10) and (4.45) that

(4.47) ln
(
1 + ‖θ‖2

L∞(I;B
1/2
p,∞)

)
≤ 1

2
A+ C

(
‖θ(I−)‖2

Ḣ1/2 + ln
(
1 + ‖θ(I−)‖2

B
1/2
p,∞

+ ‖∇u(I−)‖2L2

))
.

Now for any t ∈]0, T ∗[, let us decompose [0, t] into the intervals: Ii = [ti, ti+1], i = 0, · · · , N − 1

so that [0, T ] = ∪N−1
i=0 [ti, ti+1] with t0 = 0, tN = t and

∀i ∈
{

0, 1, · · · , N − 2
}
, C‖θ0‖2L∞‖∇u‖2L2(Ii;L2) = 1 and C‖θ0‖2L∞‖∇u‖2L2(IN−1;L2) ≤ 1.

Let us observe from (2.1) that

(4.48) N ≤ 1 + C‖θ0‖2L∞‖∇u‖2L2
t (L

2) ≤ 1 + CE2
0‖θ0‖2L∞ .

It follows from (4.44), (4.46) and (4.47) that

fi
def
= ‖θ‖2

L̃∞(Ii;Ḣ1/2)
+ ‖θ‖2

L2(Ii;Ḣ1)

+ ln
(
1 + ‖θ‖2

L∞(Ii;B
1/2
p,∞)

+ ‖∇u‖2L∞(Ii;L2) + ‖∂tu‖2L2(Ii;L2)

)
≤‖θ‖2

L̃∞(Ii;Ḣ1/2)
+ ‖θ‖2

L2(Ii;Ḣ1)
+ ln

(
1 + ‖θ‖2

L∞(Ii;B
1/2
p,∞)

)
+ ln

(
1 + ‖∇u‖2L∞(Ii;L2) + ‖∂tu‖2L2(Ii;L2)

)
≤A+ B + C

(
‖θ(ti)‖2Ḣ1/2 + ln

(
1 + ‖θ(ti)‖2

B
1/2
p,∞

+ ‖∇u(ti)‖2L2

))
≤A+ B + Cfi−1.

(4.49)
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Inductively, we deduce from (4.49) that for i ≥ 2

fi ≤ (A+ B)
Ci−1 − 1

C − 1
+ Ci−1f1.

Yet observe from (4.49) that

f1 ≤ A+ B + C
(
‖θ0‖2Ḣ1/2 + ln

(
1 + ‖θ0‖2

B
1/2
p,∞

+ ‖∇u0‖2L2

))
.

We thus obtain

(4.50) fi ≤ (A+ B)
Ci − 1

C − 1
+ Ci

(
‖θ0‖2Ḣ1/2 + ln

(
1 + ‖θ0‖2

B
1/2
p,∞

+ ‖∇u0‖2L2

))
,

which together with (4.48) and (4.49) implies

‖θ‖2
L̃∞t (Ḣ1/2)

+ ln
(
1 + ‖θ‖2

L∞t (B
1/2
p,∞)

)
≤ C1+C‖θ0‖2L∞E

2
0

(
A+ B + ‖θ0‖2Ḣ1/2 + ln

(
1 + ‖θ0‖2

B
1/2
p,∞

+ ‖∇u0‖2L2

))
.

(4.51)

Then (4.49) and (4.50) ensures that

‖θ‖2
L2
t (Ḣ

1)
≤ C2+C‖θ0‖2L∞E

2
0

(
A+ B + ‖θ0‖2Ḣ1/2 + ln

(
1 + ‖θ0‖2

B
1/2
p,∞

+ ‖∇u0‖2L2

))
,

which together with the (4.51) leads to (4.39). Substituting (4.39) into (4.26) gives the first in-
equality of (4.40). Finally substituting the first inequality of (4.40) into (4.30) leads to the second
inequality of (4.40). This completes the proof of Proposition 4.2. �

4.3. The improved derivative estimates of (θ, u). Based on the energy estimates of (θ, u) in
the last subsection, we shall present the estimates of ‖u‖L1

t (Ḃ
1
∞,1) and ‖θ‖

L̃1
t (Ḃ

3/2
p,∞)

in this subsection.

Proposition 4.3. Let (θ, u) be smooth enough solution of the System (1.1) on [0, T ∗[. Then under

the assumptions of Proposition 4.2, for any t < T ∗, if we assume moreover that u0 ∈ Ḃ−1
∞,1, there

holds

‖u‖L1
t (Ḃ

1
∞,1) ≤ C

(
‖u0‖Ḃ−1

∞,1
+ E2

0(1 + E0) + t‖θ0‖
q
2
Lq‖θ0‖

1− q
2

L∞

+ G3G
p+2

2(p−1)

4

(
‖θ0‖L2

√
t
) p−4

2(p−1)

)
def
= H(t),

(4.52)

for G3 given by (4.40) and G4
def
= ‖θ0‖B1/2

p,∞
+ C‖θ0‖L∞G3.

Proof. We first deduce from (4.10) and (4.40) that

(4.53) ‖θ‖
L̃∞t (B

1/2
p,∞)

+ ‖θ‖
L̃2
t (B

1
p,∞)
≤ ‖θ0‖B1/2

p,∞
+ C‖θ0‖L∞G3

def
= G4.

While we deduce from (4.34) that

∆̇ju(t) = et∆∆̇ju0 +

∫ t

0
e(t−t′)∆∆̇jP

(
−u · ∇u+ 2div

(
(µ(θ)− 1)d

)
+ θe2

)
(t′) dt′,

from which and Definition 3.2, we infer

(4.54) ‖u‖L1
t (Ḃ

1
∞,1) .‖u0‖Ḃ−1

∞,1
+ ‖u · ∇u‖L1

t (Ḃ
−1
∞,1) + ‖(µ(θ)− 1)∇u‖L1

t (Ḃ
0
∞,1) + ‖θ‖L1

t (Ḃ
−1
∞,1).

In view of Bony’s decomposition (3.5), we write

u · ∇u = Tu∇u+ T∇uu+R(u,∇u).
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Applying Lemma 3.1 yields

‖∆̇jTu∇u(t)‖L∞ .
∑
|j′−j|≤4

‖Sj′−1u(t)‖L∞‖∆̇j′∇u(t)‖L∞

.
∑
|j′−j|≤4

dj′(t)2
j′‖u(t)‖Ḣ1/2‖∇u(t)‖1/2

L2 ‖u(t)‖1/2
Ḃ1
∞,1

.dj(t)2
j‖u(t)‖Ḣ1/2‖∇u(t)‖

1
2

L2‖u(t)‖
1
2

Ḃ1
∞,1

.

While due to divu = 0, we get, by applying Lemma 3.1, that

‖∆̇jR(u,∇u)(t)‖L∞ . 23j
∑

j′≥j−3

‖∆̇j′u(t)‖L2‖ ˙̃
∆j′u(t)‖L2

. dj(t)2
j‖∇u(t)‖2L2 .

The same estimate holds for ∆̇jT∇uu. Hence we obtain

(4.55) ‖u · ∇u‖L1
t (Ḃ
−1
∞,1) ≤ C

(
‖∇u‖2L2

t (L
2) + ‖u‖

1
2

L∞t (L2)
‖∇u‖L2

t (L
2)‖u‖

1
2

L1
t (Ḃ

1
∞,1)

)
.

Note that since q < 2, for any integer L, we have

‖θ‖L1
t (Ḃ
−1
∞,1) .

∑
j≤L

2
j
(

2
q
−1
)
‖∆̇jθ‖L1

t (L
q) +

∑
j≥N

2−j‖∆̇jθ‖L1
t (L
∞)

.t
(
‖θ0‖Lq2L

(
2
q
−1
)

+ ‖θ0‖L∞2−L
)
,

taking L in the above inequality so that

2
2L
q ∼ ‖θ0‖L∞

/
‖θ0‖Lq

we obtain

(4.56) ‖θ‖L1
t (Ḃ
−1
∞,1) ≤ Ct‖θ0‖

q
2
Lq‖θ0‖

1− q
2

L∞ .

Along the same line, for p > 4 and any integer N, we have

‖θ‖
L̃2
t (Ḃ

4/p
p,1 )
≤
∑
j≤N

2
j
(

1+ 2
p

)
‖∆̇jθ‖L2

t (L
2) +

∑
j>N

2
j
(

4
p
−1
)
‖θ‖

L̃2
t (Ḃ

1
p,∞)

≤C
(√

t‖θ0‖L22
N
(

1+ 2
p

)
+ ‖θ‖

L̃2
t (Ḃ

1
p,∞)

2
−N
(

1− 4
p

))
,

taking N in the above inequality so that

2
2N
(

1− 1
p

)
∼ ‖θ‖

L̃2
t (Ḃ

1
p,∞)

/√
t‖θ0‖L2 ,

which together with (4.53) leads to

(4.57) ‖θ‖
L̃2
t (Ḃ

4
p
p,1)
≤ CG

p+2
2(p−1)

4

(
‖θ0‖L2

√
t
) p−4

2(p−1) .

On the other hand, by using Bony’s decomposition (3.5) once again, we write(
µ(θ)− 1

)
d = Tµ(θ)−1d+ Td

(
µ(θ)− 1

)
+R(µ(θ)− 1, d).
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Applying Lemma 3.1 gives

‖∆̇jR(µ(θ)− 1, d)‖L1
t (L
∞) .2

4j
p

∑
j′≥j−3

‖∆̇j′(µ(θ)− 1)‖L2
t (L

p)‖
˙̃

∆j′∇u‖L2
t (L

p)

.dj‖∇u‖L2
t (L

p)‖θ‖
L̃2
t (Ḃ

4
p
p,1)
,

from which, (4.40) and (4.57), we deduce

‖∆̇jR(µ(θ)− 1, d)‖L1
t (L
∞) ≤ CdjG3G

p+2
2(p−1)

4

(
‖θ0‖L2

√
t
) p−4

2(p−1) .

The same estimate holds for Td
(
µ(θ)− 1

)
. We thus obtain

‖(µ(θ)− 1)d‖L1
t (Ḃ

0
∞,1) ≤ C

(
‖µ(θ)− 1‖L∞‖u‖L1

t (Ḃ
1
∞,1) + G3G

p+2
2(p−1)

4

(
‖θ0‖L2

√
t
) p−4

2(p−1)

)
.

Resuming the above inequality, (4.55), (4.56) into (4.54) results in

‖u‖L1
t (Ḃ

1
∞,1) ≤ ‖u0‖Ḃ−1

∞,1
+ C

(
‖u‖

1
2

L∞t (L2)
‖∇u‖L2

t (L
2)‖u‖

1
2

L1
t (Ḃ

1
∞,1)

+ ‖∇u‖2L2
t (L

2) + t‖θ0‖
q
2
Lq‖θ0‖

1− q
2

L∞ + G3G
p+2

2(p−1)

4

(
‖θ0‖L2

√
t
) p−4

2(p−1)

)
,

from which, and (2.1), we infer (4.52). This completes the proof of Proposition 4.3. �

Corollary 4.2. Under the assumption of Proposition 4.3, one has

(4.58) ‖θ‖
L̃∞t (Ḃ

1/2
p,∞)

+ ‖θ‖
L̃1
t (Ḃ

3/2
p,∞)
≤ ‖θ0‖Ḃ1/2

p,∞
exp
(
CH(t)

)
for any t < T ∗ and H(t) given by (4.52).

Proof. Since divu = 0, similar to the derivation (4.12), for p > 4, one has

1

p

d

dt
‖∆̇jθ(t)‖pLp +

∫
R2

(
|D|∆̇jθ

)
|∆̇j |p−2∆̇jθ dx ≤ ‖∆̇jθ‖p−1

Lp ‖[∆̇j ;u · ∇]θ‖Lp ,

from which and the generalized Bernstein inequality (see [20, 31] for instance)

c2j‖∆̇jθ‖pLp ≤
∫
R2

(
|D|∆̇jθ

)
|∆̇j |p−2∆̇jθ dx,

we infer

(4.59) ‖∆̇jθ(t)‖Lp ≤ ‖∆̇jθ0‖Lp exp
(
−c2jt

)
+

∫ t

0
exp
(
−c2j(t− t′)

)
‖[∆̇j ;u · ∇]θ(t′)‖Lp dt′.

Using Bony’s decomposition, we write

[∆̇j ;u · ∇]θ = [∆̇j ;Tu · ∇]θ + ∆̇jT∇θu− T∆̇j∇θu+ ∆̇jR(u,∇θ)−R(u, ∆̇j∇θ),

from which, we infer, by a similar derivation of (4.37), that

‖[∆̇j ;u · ∇]θ(t′)‖Lp ≤ C2−
j
2 ‖∇u(t′)‖L∞‖θ(t′)‖Ḃ1/2

p,∞
.

Resuming the above estimate into (4.59) and using Definition 3.2, we obtain

‖θ‖
L̃∞t (Ḃ

1/2
p,∞)

+ ‖θ‖
L̃1
t (Ḃ

3/2
p,∞)
≤ C

(
‖θ0‖Ḃ1/2

p,∞
+

∫ t

0
‖∇u(t′)‖L∞‖θ(t′)‖Ḃ1/2

p,∞
dt′
)
.

Applying Gronwall’s inequality and using (4.52) leads to (4.58). �

Finally by applying Lemma 3.2, we prove the following a priori estimate for smooth enough
solutions of (1.1):
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Corollary 4.3. Let (θ, u) be a smooth enough solution of the System (1.1) on [0, T ∗[. Then under
the assumptions of Theorem 1.1, for t < T ∗, we have

(4.60) ‖u‖
L̃2
t (Ḃ

3/2
2,∞)
≤ C

(
‖u0‖H1 + CE0

(
(1 + E2

0)(1 + G
1
4
2 ) + exp

( p

2(p− 4)
G1

))) def
= G5

for E0 and G1,G2 given by (2.1) and (4.39), (4.40) respectively.

Proof. In view of (1.1), we get, by applying Lemma 3.2, that

‖u‖
L̃2
t (Ḃ

3/2
2,∞)
≤C
(
‖u0‖Ḃ1/2

2,∞
+ ‖θ‖

L
4
3
t (L2)

+ ‖∇u‖L2
t (L

4)‖u‖L∞t (L2)

+ ‖µ(θ)− 1‖L∞t (L∞)‖u‖L̃2
t (Ḃ

3/2
2,∞)

+ ‖θ‖
p
p−4

L∞t (Ḃ
1/2
p,∞)
‖∇u‖L2

t (L
2)

)
.

(4.61)

In view of (1.7), one has
‖θ‖

L
4
3
t (L2)

. E0.

While we deduce from (4.29) and (4.40) that

‖∇u‖L2
t (L

4) . (1 + E0)E
1
2
0

(
1 + G

1
4
2

)
.

Substituting the above inequalities, (2.1) and (4.40) into (4.61) and taking ε0 to be sufficiently
small in (1.5), we achieve (4.60). �

5. Proof of Theorem 1.1

5.1. Existence part of Theorem 1.1. We first prove the propagation of low regularities for the
temperature function θ.

Lemma 5.1. Let (θ, u) be a smooth solution of system (1.1) on [0, T ∗[. Then under the assumptions
of Theorem 1.1, we have for any t < T ∗

(5.1) ‖θ‖
L̃∞t (Ḣ−s0 )

≤ CE0

(
1 + E0(1 + E0 + G1)

) def
= G6

for E0 and G1 given by (1.8) and (4.39) respectively.

Proof. By virtue of (4.59), we have

(5.2) ‖∆̇jθ(t)‖L2 . e−ct2
j‖∆̇jθ0‖L2 +

∫ t

0
e−c(t−t

′)2j‖[∆̇j ;u · ∇]θ(t′)‖L2 dt′,

from which, we infer

‖θ‖
L̃∞t (Ḣ−s0 )

. ‖θ0‖Ḣ−s0 +
(∑
j∈Z

2−2js0‖[∆̇j ;u · ∇]θ‖2L1
t (L

2)

) 1
2

. ‖θ0‖Ḣ−s0 +

∫ t

0

∑
j∈Z

2−js0‖[∆̇j ;u · ∇]θ(t′)‖L2 dt′.

Applying Lemma 3.3 gives rise to

(5.3) ‖θ‖
L̃∞t (Ḣ−s0 )

. ‖θ0‖Ḣ−s0 + ‖θ‖L2
t (Ḣ

1−s0 )‖∇u‖L2
t (L

2).

By the same manner, we get

‖θ‖L2
t (Ḣ

1−s0 ) .‖θ0‖Ḣ1/2−s0 +

∫ t

0

∑
j∈Z

2−j(s0−1/2)‖[∆̇j ;u · ∇]θ(t′)‖L2 dt′

.‖θ0‖Ḣ1/2−s0 + ‖θ‖L2
t (Ḣ

3/2−s0 )‖∇u‖L2
t (L

2)

.‖θ0‖Ḣ−s0∩L2 + E0‖θ‖L2
t (Ḣ

3/2−s0 ),
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and

‖θ‖L2
t (Ḣ

3/2−s0 ) .‖θ0‖Ḣ1−s0 + ‖θ‖L2
t (Ḣ

2−s0 )‖∇u‖L2
t (L

2)

.‖θ0‖Ḣ−s0∩L2 + E0‖θ‖L2
t (L

1∩Ḣ1).

On the other hand, note that Inequalities (1.7) and (4.40) ensures that

‖θ‖L2
t (L

2∩Ḣ1) . E0 + G1,

so that we achieve

‖θ‖L2
t (Ḣ

1−s0 ) . E0(1 + E0 + G1),

from which and (5.3), we obtain (5.1). This completes the proof of the proposition. �

Now we are in a position to complete the existence part of Theorem 1.1:

Existence part of Theorem 1.1. The proof of the existence of solutions to a nonlinear partial differ-
ential equations basically follows from the following strategy: one begins by solving an appropriate
approximate problem and then proves the uniform bounds for such approximate solutions, and the
last step consists in proving the convergence of such approximate solutions to a solution of the
original system.

According to this strategy, we first mollify the initial data as follows:

θn0
def
= (Ṡn − Ṡ−n)θ0 and un0

def
= (Ṡn − Ṡ−n)u0 for n ∈ N∗ .

Then we have (θn0 , u0) ∈ Bs+1
2,1 ×Bs

2,1 for any s > 0. Moreover, by virtue of (1.5), there holds

(5.4)

‖µ(θn0 )− 1‖L∞ ≤ ‖µ(θn0 )− µ(θ0)‖L∞ + ‖µ(θ0)− 1‖L∞
. ‖θn0 − θ0‖Ḣ1/2 + ‖θn0 − θ0‖Ḃ1/2

p,∞
+ ‖µ(θ0)− 1‖L∞ for 4 < p

. ε0.

In view of Theorem A.1 in the Appendix, we deduce that for any s ∈ [1/2, 2], the System (1.1)
with the initial data (θn0 , u

n
0 ) admits a unique local in time solution (θn, un,∇Πn) on [0, Tn∗ [ which

verify

θn ∈ C([0, Tn[;B1+s
2,1 ) ∩ L1

Tn(B2+s
2,1 ), un ∈ C([0, Tn[; Bs

2,1) ∩ L1
Tn(B2+s

2,1 )

and ∇Πn ∈ L1
Tn(Bs

2,1) for any Tn < Tn∗ .

Furthermore, it follows from Proposition 4.1 that for any t < Tn∗

(5.5) ‖θn(t)‖L2 ≤ CE0〈t〉−s0 and ‖un‖L∞t (L2) + ‖∇un‖L2
t (L

2) ≤ CE0

for E0 given by (2.1).
And Proposition 4.2 and Lemma 5.1 ensure that for p ∈ [4, p∗] and for any t < Tn∗

‖θn‖2
L̃∞t (Ḣ1/2)

+ ln
(
1 + ‖θn‖

L∞t (Ḃ
1/2
p,∞)

)
+ ‖θ‖2

L2
t (Ḣ

1)
≤ G1, ‖∇un‖L2

t (L
p) ≤ G3

‖∇un‖2L∞t (L2) + ‖∂tun‖2L2
t (L

2) ≤ G2 and ‖θ‖
L̃∞t (Ḣ−s0 )

≤ G6

(5.6)

for G1,G2,G3 given by (4.39) and (4.40) respectively and for G6 given by (5.1).
Proposition 4.3, Corollaries 4.2 and 4.3 imply that for any t < Tn∗

‖un‖L1
t (Ḃ

1
∞,1) ≤H(t),

‖θn‖
L̃∞t (Ḃ

1/2
p,∞)

+ ‖θn‖
L̃1
t (Ḃ

3/2
p,∞)
≤‖θ0‖Ḃ1/2

p,∞
exp
(
CH(t)

)
,

‖u‖
L̃2
t (Ḃ

3/2
2,∞)
≤G5

(5.7)

for H(t) given by (4.52) and G5 given by (4.60). Therefore according to Theorem A.1 in the
Appendix, Tn∗ =∞.
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With the uniform estimate (5.5) to (5.7) in hand, we can prove that there is a a subsequence
of
{

(θn, un,∇Πn)
}
n∈N, which converges to a solution (θ, u,∇Π) of (1.1) by using a standard com-

pactness argument of Lions-Aubin’s Lemma. Moreover, this solution satisfies (1.6) and (1.7). Since
this argument is rather standard, we shall not present the details here. For instance, one may check
similar argument from page 582 to page 583 of [2] for details. �

5.2. Uniqueness part of Theorem 1.1. It remains to prove the uniqueness part of Theorem
1.1, which we present now.

Proof of the uniqueness part of Theorem 1.1. Let (θi, ui,∇Πi), for i = 1, 2, be two solutions of
(1.1) which satisfies (1.6). We denote

(δθ, δu,∇δΠ)
def
= (θ2 − θ1, u2 − u1,∇Π2 −∇Π1).

Then by virtue of (1.1), the system for (δθ, δu,∇δΠ) reads

(5.8)


∂tδθ + u2 · ∇δθ + |D|δθ = −δu · ∇θ1

∂tδu+ (u2 · ∇)δu− 2div
(
µ(θ2)d(δu)

)
+∇δΠ = δθe2 + δF,

divu = 0,
(δθ, δu)|t=0 = (0, 0),

where δF is determined by

δF = −(δu · ∇)u1 + 2div
(
(µ(θ2)− µ(θ1))d(u1)

)
.

Note that since p > 4, one has

‖∇θ1‖L1
t (L
∞) . ‖θ‖

1
2
− 2
p

L̃1
t (B

1/2
p,∞)
‖θ‖

1
2

+ 2
p

L̃1
t (B

3/2
p,∞)

,

then we get, by using energy estimate to the δθ equation of (5.8), that

‖δθ‖2L∞t (L2) + ‖δθ‖2
L2
t (Ḣ

1/2)
≤−

∫ t

0

(
δu · ∇θ1 | δu

)
dt′

≤
∫ t

0
‖∇θ1(t′)‖L∞‖δu(t′)‖L2‖δθ(t′)‖L2 dt′.

(5.9)

While it follows from Proposition 3.1 that

‖δθ‖2
L∞t (Ḃ0

2p
p−2 ,∞

)
. ‖δu · ∇θ1‖2

L2
t (Ḃ
−1/2
2p
p−2 ,∞

)
exp
(
C‖∇u2‖L2

t (L
4)

)
.

Yet applying Bony’s decomposition (3.5) gives

δu · ∇θ1 = Tδu∇θ1 + T∇θ1 +R(δu,∇θ1)

from which, and para-product estimates in [7], we infer

‖δu(t) · ∇θ1(t)‖
Ḃ
−1/2
2p
p−2 ,∞

. ‖δu(t)‖
L

2p
p−4
‖θ1(t)‖

B
1/2
p,∞

.

Note that in R2, one has

‖δu(t)‖
L

2p
p−4
≤ C‖δu(t)‖

p−4
p

L2 ‖∇δu(t)‖
4
p

L2 ,

so that applying Young’s inequality leads to

(5.10) ‖δθ‖2
L∞t (Ḃ0

2p
p−2 ,∞

)
≤ C exp

(
C‖∇u2‖L2

t (L
4)

)∫ t

0
‖θ1‖

2p
p−4

Ḃ
1/2
p,∞
‖δu‖2L2 dt

′ +
1

8
‖∇δu‖2L2

t (L
2).
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Whereas by taking L2 inner product δu with the δu equation of (5.8), we get

1

2

d

dt

∫
R2
|δu|2 dx+ 2

∫
R2
µ(θ2)d(δu) : d(δu) dx =

∫
R2

(δθe2 + δF ) | δu dx,

which together with∣∣∣∫
R2
δu · ∇u1 | δu(t) dx

∣∣∣ ≤ ‖δu · ∇u1(t)‖H 1‖δu(t)‖BMO

≤ C‖∇u1(t)‖L2‖δu(t)‖L2‖∇δu(t)‖L2 ,

leads to

(5.11)

‖δu‖2L∞t (L2) + ‖∇δu‖2L2
t (L

2) ≤C
(∫ t

0
‖∇u1(t′)‖2L2‖δu(t′)‖2L2 dt

′

+

∫ t

0
‖δθ‖

L
2p
p−2
‖∇u1‖Lp‖∇δu‖L2 dt′ +

∫ t

0
‖δθ‖L2‖δu‖L2 dt′

)
.

Notice that for any positive integer N and p > 4, we write

‖δθ(t)‖
L

2p
p−2
≤ ‖δθ(t)‖Ḃ0

2p
p−2 ,2

≤ ‖δθ(t)‖L2 +
√
N‖δθ(t)‖Ḃ0

2p
p−2 ,∞

+ 2
−N( 1

2
− 2
p

)‖δθ(t)‖Ḣ1/2 .

Taking N in the above inequality so that

2
N( 1

2
− 2
p

) ∼ ‖δθ(t)‖Ḣ1/2

/
‖δθ(t)‖Ḃ0

2p
p−2 ,∞

we obtain

‖δθ(t)‖
L

2p
p−2
≤ C

(
‖δθ(t)‖L2 + ‖δθ(t)‖Ḃ0

2p
p−2 ,∞

ln
1
2
(
e+

2∑
i=1

‖θi‖Ḣ1/2

/
‖δθ(t)‖Ḃ0

2p
p−2 ,∞

))
.

Substituting the above inequality into (5.11) gives rise to

(5.12)

‖δu‖2L∞t (L2) + ‖∇δu‖2L2
t (L

2)

≤C
∫ t

0

(
1 + ‖∇u1(t′)‖2L2 + ‖∇u1(t′)‖2Lp

)(
‖δθ(t′)‖2L2 + ‖δu(t′)‖2L2

)
dt′

+ C

∫ t

0
‖∇u1(t′)‖2Lp‖δθ(t′)‖2Ḃ0

2p
p−2 ,∞

ln
(
e+

2∑
i=1

‖θi(t′)‖Ḣ1/2

/
‖δθ(t′)‖Ḃ0

2p
p−2 ,∞

)
dt′

+
1

8
‖∇δu‖2L2

t (L
2).

Let us denote

(5.13) Y (t)
def
= ‖δθ‖2L∞t (L2) + ‖δθ‖2

L∞t (Ḃ0
2p
p−2 ,∞

)
+ ‖δu‖2L∞t (L2).

Then for β(t) given by

β(t)
def
=

2∑
i=1

‖θi(t)‖Ḣ1/2 ,

by summing up (5.9), (5.10) and (5.12), we obtain

Y (t) ≤ C exp
(
C‖∇u2‖L2

t (L
4)

)∫ t

0

(
1 + ‖∇θ1(t′)‖L∞ + ‖∇u1(t′)‖2L2

+ ‖∇u1(t′)‖2Lp + ‖θ1(t′)‖
2p
p−4

Ḃ
1/2
p,∞)

)
Y (t′) ln

(
e+ β(t′)

/
Y (t′)

)
dt′,
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from which and Osgood Lemma, we infer

Y (t) = 0.

This completes the uniqueness part of Theorem 1.1. �

5.3. The proof of Corollary 1.1. Indeed, let h(θ)
def
= µ(θ)−1. Then under the assumption (1.10),

we deduce from from the θ equation of (1.1) and Lemma 4.1 that

‖µ(θ(t))− 1‖L∞ = ‖h(θ(t))‖L∞ ≤ ‖h(θ0)‖L∞ = ‖µ(θ0)− 1‖L∞ ,
which implies (1.5). Thus according to Theorem 1.1, we complete the proof of Corollary 1.1.

Appendix A. The blow-up criteria for smooth solutions of (1.1)

The goal of this section is to prove the following local well-posedness result of (1.1):

Theorem A.1. Let s ≥ 1/2, θ0 ∈ B1+s
2,1 and u0 ∈ Bs

2,1. Then there exists s positive time T ∗ so

that (1.1) has a unique solution (θ, u) on [0, T ∗[ so that for any T < T ∗, one has

(A.1) θ ∈ C([0, T ];B1+s
2,1 ) ∩ L1

T (B2+s
2,1 ) and u ∈ C([0, T ];Bs

2,1) ∩ L1
T (B2+s

2,1 ).

Furthermore, if T ∗ is the maximal time of existence to this solution, and T ∗ <∞, then one has

lim
t→T ∗

‖∇u‖L1
t (L
∞) =∞.

Proof. It follows by a standard argument (see for instance the proof of Theorems 1.1 and 1.2 in
[2]) that (1.1) has a unique local solution (θ, u) on [0, T ∗[ so that there holds (A.1). It remains to
prove that if

(A.2) lim
t→T ∗

‖∇u‖L1
t (L
∞) <∞,

one has

(A.3) lim
t→T ∗

(
‖θ(t)‖B1+s

2,1
+ ‖u(t)‖Bs2,1

)
<∞.

As a matter of fact, we first deduce from a standard energy estimate to (1.1) that

1

2

d

dt

(
‖θ(t)‖2L2 + ‖u(t)‖2L2

)
+ ‖θ‖2

Ḣ1/2 +

∫
R2
µ(θ)d : d dx =

∫
R2
θu2 dx,

which together with (1.4) implies

(A.4)
1

2

(
‖θ(t)‖2L2 + ‖u(t)‖2L2

)
+ ‖θ‖2

L2
t (Ḣ

1/2)
+ ‖∇u‖2L2

t (L
2) ≤

1

2

(
‖θ0‖2L2 + ‖u0‖2L2

)
et.

As a convention in the remaining of this section, we shall always assume that t < T ∗.

step 1. The estimate of ‖∇θ‖L2
t (L
∞).

For any p ∈]1,∞[, we first deduce, by a similar derivation of (3.18), that

(A.5) ‖∆̇jθ‖L∞t (Lp) + c2j‖∆̇jθ‖L1
t (L

p) ≤ ‖∆̇jθ0‖Lp +

∫ t

0
‖[∆̇j ;u · ∇]θ(t′)‖Lp dt′.

Using Bony’s decomposition (3.5), we write

[∆̇j ;u · ∇]θ = [∆̇j ;Tu∇]θ + ∆̇jT
′
∇θu− T ′∇∆̇jθ

u.

It follows from the classical commutator’s estimate that

‖[∆̇j ;Tu∇]θ(t)‖Lp .
∑
|j′−j|≤4

‖Sj′−1∇u(t)‖L∞‖∆̇jθ(t)‖Lp

.dj(t)2
−js1‖∇u(t)‖L∞‖θ(t)‖Ḃs1p,1 .
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While for s1 ∈]0, 1[, applying Lemma 3.1 gives

‖T ′∇θu(t)‖Lp .
∑

j′≥j−N0

‖Sj′+2∇θ(t)‖Lp‖∆̇j′u(t)‖L∞

.
∑

j′≥j−N0

dj′(t)2
j′(1−s1)‖θ(t)‖Ḃs1p,12−j

′‖∇u(t)‖L∞

.dj(t)2
−js1‖∇u(t)‖L∞‖θ(t)‖Ḃs1p,1 .

The same estimate holds for T ′∇∆̇jθ
u. Whence we obtain

‖[∆̇j ;u · ∇]θ(t)‖Lp . dj(t)2−js1‖∇u(t)‖L∞‖θ(t)‖Ḃs1p,1 ,

from which and (A.5), we infer

(A.6) ‖θ‖
L̃∞t (Ḃ

s1
p,1)

+ ‖θ‖
L1
t (Ḃ

1+s1
p,1 )

≤ C
(
‖θ0‖Ḃs1p,1 +

∫ t

0
‖∇u(t′)‖L∞‖θ(t′)‖Ḃs1p,1 dt

′
)
∀ s1 ∈]0, 1[.

In particular, for any p ∈]4,∞[, by taking s1 = 1/2+2/p in the above inequality and then applying
Gronwall’s inequality, we achieve

(A.7) ‖θ‖
L̃∞t (Ḃ

1/2+2/p
p,1 )

+ ‖θ‖
L1
t (Ḃ

3/2+2/p
p,1 )

≤ C‖θ0‖Ḃ1/2+2/p
p,1

exp
(
C‖∇u‖L1

t (L
∞)

)
,

and hence due to s ≥ 1/2, we get, by applying Lemma 3.1, that

‖∇θ‖L2
t (L
∞) ≤ ‖θ‖L̃2

t (Ḃ
1+2/p
p,1 )

≤C‖θ‖
1
2

L̃∞t (Ḃ
1/2+2/p
p,1 )

‖θ‖
1
2

L1
t (Ḃ

3/2+2/p
p,1 )

≤C‖θ0‖B1+s
2,1

exp
(
C‖∇u‖L1

t (L
∞)

)
.

(A.8)

step 2. The estimate of ‖θ‖
L̃∞t (Ḃs2,1)

and ‖θ‖
L̃∞t (Ḃ1+s

2,1 )
.

We first get, by a similar derivation of (A.6), that for any s2 > 0,

(A.9) ‖θ‖
L̃∞t (Ḃ

s2
2,1)

+ ‖θ‖
L1
t (Ḃ

1+s2
2,1 )

≤ C
(
‖θ0‖Ḃs22,1 +

∫ t

0

(
‖∇u‖L∞‖θ‖Ḃs22,1 + ‖∇θ‖L∞‖u‖Ḃs22,1

)
(t′) dt′

)
,

Taking s2 = s and s2 = 1 + s in (A.9) and then summing up the resulting inequalities results in

‖θ‖
L̃∞t (Ḃs2,1)

+ ‖θ‖
L̃∞t (Ḃ1+s

2,1 )
+ ‖θ‖L1

t (Ḃ
1+s
2,1 ) + ‖θ‖L1

t (Ḃ
2+s
2,1 )

≤ C
(
‖θ0‖Ḃs2,1 + ‖θ0‖Ḃ1+s

2,1
+

∫ t

0

(
‖∇u‖L∞

(
‖θ‖Ḃs2,1 + ‖θ‖Ḃ1+s

2,1

)
+ ‖∇θ‖L∞(1 + ‖∇θ‖L∞)‖u‖Ḃs2,1

)
(t′) dt′

)
+

1

4
‖u‖L1

t (Ḃ
2+s
2,1 ),

(A.10)

where we used the fact that

(A.11) ‖u(t)‖Ḃ1+s
2,1
. ‖u(t)‖

1
2

Ḃs2,1
‖u(t)‖

1
2

Ḃ2+s
2,1

.

step 3. The estimate of ‖u‖
L̃∞t (Ḃs2,1)

.

We first deduce from (4.35) and Definition 3.2 that

‖u‖
L̃∞t (Ḃs2,1)

+ ‖u‖L1
t (Ḃ

2+s
2,1 ) .‖u0‖Ḃs2,1 +

∑
j∈Z

2js‖[∆̇j ;u · ∇]u‖L1
t (L

2)

+
∑
j∈Z

2j(1+s)‖[∆̇j ;µ(θ) · ∇]u‖L1
t (L

2) +
∑
j∈Z

2js‖∆̇jθ‖L1
t (L

2).
(A.12)
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The same proof of (4.37) ensures that∑
j∈Z

2js‖[∆̇j ;u · ∇]u‖L1
t (L

2) .
∫ t

0
‖∇u(t′)‖L∞‖u(t′)‖Ḃs2,1 dt

′.

While by using Bony’s decomposition (3.5), we write

[∆̇j ;µ(θ) · ∇]u = [∆̇j ;Tµ(θ)]∇u+ ∆̇j(T
′
∇u(µ(θ)− 1))− T ′∇∆̇ju

(µ(θ)− 1).

Applying classical commutator’s estimate yields

‖[∆̇j ;Tµ(θ)]∇u(t)‖L2 .2−j
∑
|j′−j|≤4

‖Sj′−1∇µ(θ(t))‖L∞‖∆̇j∇u(t)‖L2

.dj(t)2
−j(1+s)‖∇θ(t)‖L∞‖u(t)‖Ḃ1+s

2,1
.

Whereas applying Lemma 3.1 leads to

‖∆̇j(T
′
∇u(µ(θ)− 1))(t)‖L2 .

∑
j′≥j−N0

‖Sj′+2∇u(t)‖L∞‖∆̇j′(µ(θ(t))− 1)‖L2

.dj(t)2
−j(1+s)‖∇u(t)‖L∞‖θ(t)‖Ḃ1+s

2,1
.

The same estimate holds for T ′∇∆̇ju
(µ(θ)− 1). So that we achieve

∑
j∈Z

2j(1+s)‖[∆̇j ;µ(θ) · ∇]u‖L1
t (L

2) .
∫ t

0

(
‖∇θ‖L∞‖u‖Ḃ1+s

2,1
+ ‖∇u‖L∞‖θ‖Ḃ1+s

2,1

)
(t′) dt′.

Resuming the above estimates into (A.12) gives rise to

‖u‖
L̃∞t (Ḃs2,1)

+ ‖u‖L1
t (Ḃ

2+s
2,1 ) .‖u0‖Ḃs2,1 +

∫ t

0

(
‖∇u‖L∞(‖u‖Ḃs2,1

+ ‖θ‖Ḃ1+s
2,1

) + ‖∇θ‖L∞‖u‖Ḃ1+s
2,1

)
(t′) dt′ + ‖θ‖L1

t (Ḃ
s
2,1).

(A.13)

step 4. The closure of the estimate.

Let us denote

(A.14) η(t)
def
= ‖θ‖

L̃∞t (Ḃs2,1)
+ ‖θ‖

L̃∞t (Ḃ1+s
2,1 )

+ ‖u‖
L̃∞t (Ḃs2,1)

+ ‖θ‖L1
t (Ḃ

1+s
2,1 ) + ‖θ‖L1

t (Ḃ
2+s
2,1 ) + ‖u‖L1

t (Ḃ
2+s
2,1 ).

Then by summing up (A.10) and (A.13), and using (A.11), we conclude

η(t) ≤C
(
‖θ0‖Ḃs2,1 + ‖θ0‖Ḃ1+s

2,1
+ ‖u0‖Ḃs2,1

+

∫ t

0

(
1 + ‖∇u(t′)‖L∞ + ‖∇θ(t′)‖L∞(1 + ‖∇θ(t′)‖L∞)

)
η(t′) dt′

)
.

Applying Gronwall’s inequality and using (A.2), (A.8) and (A.4) concludes the proof of (A.3). This
completes the proof of the theorem. �
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