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ABSTRACT. In this paper, we prove the global existence of smooth solutions to the three-dimensional
incompressible magneto-hydrodynamical system with initial data close enough to the equilibrium
state, (es,0). Compared with the the previous works [21, 29], here we present a new Lagrangian
formulation of the system, which is a damped wave equation and which is non-degenerate only in
the direction of the initial magnetic field. Furthermore, we remove the admissible condition on the
initial magnetic field, which was required in [21, 29]. By using Frobenius Theorem and anisotropic
Littlewood-Paley theory for the Lagrangian formulation of the system, we achieve the global L' in
time Lipschwitz estimate of the velocity field, which allows us to conclude the global existence of
solutions to this system. In the case when the initial magnetic field is a constant vector, the large
time decay rate of the solution is also obtained.
Keywords: Inviscid MHD system, Anisotropic Littlewood-Paley theory, Lagrangian
coordinates
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1. INTRODUCTION

In this paper, we investigate the global existence of smooth solutions to the following three-
dimensional incompressible magnetic hydrodynamical system (or MHD in short) with initial data
being sufficiently close to the equilibrium state (es,0) :

Ob+u-Vb="b-Vu, (t,x) € RT x R3,
(1.1) ou+u-Vu—Au+Vp=>b-Vb,
’ divu = divb =0,

(b, u)|t=0 = (bo,uo) with by = es+ e,

where b = (b',b%,b3) denotes the magnetic field, and v = (u',u?,u3),p the velocity and scalar
pressure of the fluid respectively. This MHD system (1.1) with zero diffusivity in the magnetic
field equation can be applied to model plasmas when the plasmas are strongly collisional, or the
resistivity due to these collisions are extremely small. One may check the references [4, 15, 19] for
detailed explanations to this system.

In general, it is not known whether or not classical solutions of (1.1) can develop finite time
singularities even in two dimension. In the case when there is full magnetic diffusion in (1.1),
Duvaut and Lions [16] established the local existence and uniqueness of solution in the classical
Sobolev space H S(Rd), s > d, they also proved the global existence of solutions to this system with
small initial data; Sermange and Temam [28] proved the global well-posedness of this system in
the two space dimension; the first author and Paicu [1] proved similar result as that in [16] for the
so-called inhomogeneous MHD system with initial data in the critical spaces. With mixed partial
dissipation and additional magnetic diffusion in the two-dimensional MHD system, Cao and Wu [5]
(see also [6]) proved that such a system is globally well-posed for any data in H?(RR?). Very recently,
Chemin et al [10] proved the local well-posedness of (1.1) with initial data in the critical Besov
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spaces. One may check the survey paper [20] and the references therein for the recent progresses
in this direction and also its relations to the incompressible visco-elastic fluid system.

Furthermore, whether there is dissipation or not for the magnetic field of (1.1) is a very important
problem also from physics of plasmas. The heating of high temperature plasmas by MHD waves is
one of the most interesting and challenging problems of plasma physics especially when the energy
is injected into the system at the length scales which are much larger than the dissipative ones.
It has been conjectured that in the three-dimensional MHD system, energy is dissipated at a rate
that is independent of the ohmic resistivity [12]. In other words, the viscosity (diffusivity) for the
magnetic field equation can be zero yet the whole system may still be dissipative. As a first step
to investigate this problem, Lin and the second author [22] proved the global well-posedness to
a modified three-dimensional MHD system with initial data sufficiently close to the equilibrium
state (see [23] for a simplified proof). This problem was partially solved in 2-D by Lin, Xu and
the second author in [21] and by Xu and the second author in 3-D in [29] provided that the initial
data is near the equilibrium state (e4,0) and the initial magnetic field, by, satisfies the following
admissible condition, namely

(1.2) /R(bo Ce)(Z(ha))dt =0 forall ac R x{0}

with Z(t, ) being determined by

dZ(t, o
{ o) _ by(z(t.a)),
Z(ta a)’t:o = Q.
In the 2-D case, the restriction (1.2) was removed by Ren, Wu, Xiang and Zhang in [26] by carefully
exploiting the divergence structure of the velocity field. Moreover, the authors proved that
(1.3) 10F b(t)|| L2 + (105 u(®)|| 2 < C<t>*# for any s€]0,1/2[ and k=0,1,2.

A more elementary existence proof was also given by Zhang in [31]. Very recently, Ren, Xiang and

Zhang extended this well-posedness result to the strip domain in [27]. The goal of this paper is to

remove the assumption (1.2) and improve the decay estimates (1.3) for the limiting case s = & in

2
three space dimension.

Before we present the function spaces we are going to work with in this context, let us briefly
recall some basic facts on Littlewood-Paley theory (see e.g. [2]). Let ¢ and x be smooth functions

supported in C def {r e RY, % <7< %} and B 9 {reR", 7< %} respectively such that

Z ©(2777) =1 for 7>0 and x(7)+ Z ©(277r) =1 for 72>0.
JEL Jj=0
For a € S'(R?), we set
Aa T F e Maha), sk F @ i),

(1.4) AVa % 71 (o2 e5))a), Sya & F (27 &))a),  and
Aja % (o277 |e)a), Sja % F1(x(277|¢))a),

where &, = (£1,&2), € = (&n,&3), Fa and @ denote the Fourier transform of the distribution a. The
dyadic operators satisfy the property of almost orthogonality:

(1.5) AkAja =0 if |]€ —j‘ > 2 and Ak(Sj_laAjb) =0 if ’k —j| > 5.

Similar properties hold for A]}; and AJ.



GLOBAL SOLUTION OF 3-D MHD SYSTEM 3

Definition 1.1 (Definition 2.15 of [2]). Let (p,7) € [1,+0c]?, s € R and a € S} (R?), which means
a € §'(RY) and lim;_ o || X(277D)al|~ = 0, we set

~ def ojs >
lallg,, = (2 12all0)

. : def
oFors<%(ors:%1fr:1), we define B} (R {a € S} (R?) ‘HaHBST<oo}

. IfkeNand%—i—k—l §3<%+k (or s = I;—i-ku”r—l), then B]‘;’r(R?’) is defined as the
subset of distributions a € S; (R*) such that 9%a € B;;k(Rg) whenever |3| = k.
When p = 2 and r = 1, we denote 35,1 by B* and Bs(th) by B;.

Due to the anisotropic spectral properties of the linearized equation to (1.1) (see Section 3 for
more explanation), we need also the following anisotropic type Besov norm from [22, 21]:

Definition 1.2. Let s1,s2 € R, 71,79 € [1,00] and a € S}, (R?), we define the norm
oo, def (ois1 (osa AV )
lallszy oz < (27 (22148 all =)

In particular, when r1 = r9 = 1, we denote ||a||gs1.52 def Ha||le 52

e

The main result of this paper is as follows:

Theorem 1.1. Let e3 = (0,0,1), by = e3 + £¢ with ¢ = (¢1, 2, ¢3) € C3(R?) and dive = 0, let
ug € H*(R3) for s €]3/2,3]. Then there exist sufficiently small positive constants o, co such that if

(1.6) HuoH .1 <co and € < e,

(1.1) has a unique global solution (b,u) so that for any T > 0, b —e3 € C([0,T]; H*(R?)), u €
C([0,T); H¥(R?)) with Vu € L*()0,T[; H*(R?)) and Vp € C([O,T],HS 1(R3)). Moreover, in the
case when ¢ = 0, and under the additional assumption that

(1.7) luollgo.o + [luollzs.o + lluoll 1,y +lluoll 53 < do,

oooo 200

for some &g sufficiently small, one has
1
(1.8) a2 + Ib(t) = esllg= < C@)75 with (t) = (1+2)2.

Remark 1.1. (1) Our approach to prove Theorem 1.1 works in both three space dimension and
two space dimension. Moreover, for a concise presentation, here we did not optimize the regularity
of the initial magnetic field.

(2) In general, it is impossible to propagate the anisotropic regularities for the solutions of
hyperbolic systems (it is only possible for conormal regularities (see [7] for instance)). Since we
need to use the anisotropic regularities of the solution in order to prove the decay estimate (1.8),
we are forced to study the large time behavior of the solutions to the Lagrangian formulation of
(1.1).

(3) It is easy to observe from (2.12), the equivalent Lagrangian formulation of (1.1), that, the
solution (b — es,u) to (1.1) does not decay to zero as time goes to oo when the initial magnetic
field is not a constant vector. That is the reason why we only investigate the large time behavior
of the solution to (1.1) when by = e3.

(4) More detailed decay estimates of the solution in the Lagrangian coordinate will be presented
in Theorem 2.1 of Section 2.

Let us complete this section by the notations we shall use in this context.

Notation. For any s € R, we denote by H*(R3) the classical L? based Sobolev spaces with the
norm || - ||gs, while H*(R?) the classical homogenous Sobolev spaces with the norm || - || z,. For
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a < b, we mean that there is a uniform constant C, which may be different on different lines,
such that a < Cb, and a ~ b means that both a < b and b < a. We shall denote by (a|b) the
L2(R?) inner product of @ and b. (d; 1) rez (resp. (d;);ez) will be a generic element of £1(Z?) (resp.
(H(Z)) so that >, ez djr =1 (resp. ;5 dj = 1). Finally, we denote by Lf(L{(LY)) the space
LP(]0, T[; LY(RZ ; L"(Ry,,))) with @, = (1, 22).

Ty
2. LAGRANGIAN FORMULATION OF (1.1)

In view of Proposition 6.1 of [29] (see also Proposition 7.1 below), the main difficulty to prove
the existence part of Theorem 1.1 is to achieve the L'(R™; Lip(R?)) estimate of the velocity field to
the appropriate approximate solutions of (1.1). Due to the difficulty mentioned in (2) of Remark
1.1, we used Lagrangian formulation of (1.1) in the previous works [21, 29].

Let us now explain the main idea for the Lagrangian formulation of (1.1) in [21, 29]. Taking the
3-D case for example, given by satisfying the admissible condition (1.2), the authors first construct

a matrix Uy = (l_)o, IN)O, bo) with by = (Eé,l_)%, Eg)t and by = (l;(l), 5(2), Bg)t, so that there hold
(2.1) detUp=1, divhp=0 and divb=0.

Then instead of solving (1.1), the authors proposed to solve

oU +u-VU = Vul, (t,x) € RT x R3,
ou+u-Vu—Au+ Vp=>b-Vb,

divu=0 and divU =0,
Uli=o = Uo, ult=0 = uo.

(2.2)

Motivated by the Lagrangian formulation of the visco-elastic system in [30], the authors gave the
following Lagrangian formulation of the System (2.2):

Yy —AY, —0.Y = (Vy - Vy — A))Y, — Vyg,
t
(2.3) vy'szy%—/(vy—vy)'y;ds,
0

Y=o =Yy, Yilt=0 =11,

for Y and Vy being determined by (2.11) below. It is the restriction (2.1) that requires the
admissible condition (1.2).

Here we shall give a more direct Lagrangian formulation of the System (1.1), which will be based
on Lemma 1.4 of [24]. In order to do so, let us first give an equivalent formulation of (1.1), which
does not involve the pressure function. Indeed we get, by taking the space divergence to the velocity
equation of (1.1), that

(2.4) Ap = divdiv(b Rb—u® u), or p def Afldivdiv(b Rb—u® u)

Then (1.1) can be equivalently reformulated as

Ob+u-Vb=b-Vu, (t,r) € RT x R3,
(2.5) ou~+u-Vu—Au+Vp=>b-Vb,

(b,u)|t=0 = (bo,up), and divby=divuy =0,
with p given by (2.4). And then just as in Chapter 1 of [8] for the incompressible Euler system,
the divergence free condition of w and b can be derived by the initial condition divbg = divug =0
and the evolution equation of divb and divu.

Now let (b, u) be a smooth enough solution of (2.5), we define the Lagrangian trajectory X (¢,y)
by

(2.6) { %X(tay) = u(t, X(£,y)),
X(Oa y) =Y,
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which yields for 7,5 € {1,2,3} that

X d 0Xi(t,y) ou X" (t,y)
oXN _y o2 Wy _ X(t,y) =
det( 8y> and @iy, B (t, X(t,y)) dy;
and
d /i, 0X(ty) L OXE(ty)\ ou
2.7) - (%) o ) = (4w o ) 50, (b X (t.0)

On the other hand, it follows from the magnetic field equation of (2.5) and (2.6) that

WXy x(1) - Vaile, X (1 y),

dt
which together with (2.7) ensures that
i o OX(t, i def i
(28) V(0 X(0) = 50 55 = ) 9,5 (00) 0, X' (1.0),
j
For any smooth function f, we deduce from chain rule that
of(X(t,y)) _  Of 0X"(t,y)
GREY - (2L (x (¢, y)) o
5 = ()X =5
Let us denote the inverse matrix of 8Xa(;,y) by A(t,y) = (ai;(t,y)). Then we have
0 of (X(t,
29 () = antn I o (90 = AT, (X 00))
) J

By virtue of (2.8) and (2.9), we infer

(Vo) (¢, X (1.1)) =b’5<y>w%<t, )

=06 () OreOy, (Toy X" (¢, 1))
:3bZOXi (t,y).

ob (t, X (t,y))

Oye
(2.10)

Let us denote

X(t,y) =y + / u(t, X))t Ly +Y(ty), ult,y) L, X (),
(2.11) 0

b(t,y) Co(t, X (t,9)), p(t,y) L pt, X(t,1), AL (I1d+V,Y)™" and Vy & AV,

Then thanks to (2.5), (2.8) and (2.10), we write

b(t,y) = Oy X(t,y), Vy-b=0,
(2.12) Y — DY, — 93 Y = Opobo + 9,
Yji—0 = Yo =0, Yiji=o = Y1 = uo(y),
where
g = div, [(AA' = 1)V, Y] — A'V,p, Oy bV, and
(2.13) 3 : : L
(Aap) (8, X (1,9) = D Vyi Vi (O X0 X7 = VYY) (8,1).

ij—1
Compared with the Lagrangian formulation (2.3) in [21, 29], 853}/ there is now replaced by 8b20Y,

which causes new difficulty of the variable coefficients for the linearized system.
In what follows, we assume that

(2.14) supp(bo(wn, ) — e3) C [0, K] and b} #0.
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Due to the difficulty of the variable coefficients for the linearized system of (2.12), we shall use
Frobenius Theorem type argument to find a new coordinate system {z} so that dy, = 9,,. Then we
can use anisotropic Littlewood-Paley analysis to achieve the L} (Lip) estimate for Y;. Toward this,
let us define

W0 ),
a9l _ Yo = w
dys b§ Y1,Y2,Y3),  Yilyz=0 1
(219 @:@(y Y2,93),  Yalys=0 = w
dy3 bg 1,Y2,93) 2|y3=0 2
Y3 = ws,
and
(2.16) " L 1) duw!
2.16 fno=wi, 7 =uws, 23:w3+/ (7_ ) "
0 b%(y(w)) s

Then we have

Oy1 Of(y) | Oy2 Of(y) af(y)>
6w3 8y1 811)3 8y2 8w3

Ofly(w)) _ 0f(y(w(z)))

8bof(y> = bg(

= bi(y(w)) o2 and
(2.17) of ’ 8yj(w(23))
0:(Flu(w(=))) = o (y(w(=) =57

V,=Vz =BV, with B(z)= (ay(g;(z)))_l.

It is easy to observe that

B(z) = (M)_l :<8y(w(z)) o 3w(z))—1

0z ow 0z
_(Ow@)\ 7 Oy(w(z))\ 1 _ 0z (Oy(w(z))\~?
_< 0z ) ( ow ) _(%)< ow ) '
Yet it follows from (2.15) that
b} w, b} w, b}
L o3 o o (s S0 o ()dvs 0 (g g gu
<8y(w)> =0 1 b% + w3 9 (b%)dy/ fw3 ) (b%)dy/ 0 gﬂ gﬂ gﬂ
8’[0 b 0 87341 b 3 0 873;2 b 3 611)1 811)2 aws
(2.18) 00 1 0 0 0) \Gur ous oun
def Oy(w
K4 (ya)) + Asfy(u)) (242),
which gives
Oy(w 1
(219) (P2) — (1~ as(y(w)) " Ar(y(w)).
While it is easy to observe that
1 0 0
0z(w def
(2.20) ((;w)): 0 1 0 | L Ay(w).
w3 9 (_ dw! fw3 i(#)dy/ 1
0 3w1(b8(y(w))) 3J0 dw2 \b3(y(w))/ ™73 b

As a consequence, we obtain

y(w) = (yn(wn, w3),ws), w(z) = (zn,w3(2)), and y(w(z)) = (yn(2n, w3(2)), w3(2)),
B(2) = Az(w(2)) A7 (y(w(2))) (Id — As(y(w(2)))),

with the matrices Ay, Ay, A3 being given by (2.18) and (2.20) respectively.

(2.21)
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For simplicity, let us abuse the notation that Y(¢,z) = Y (¢,y(w(2))). Then the System (2.12)
becomes

(2.22) {3%—Aﬂ%%&Y=(wwvz—A»n+@wamma»+g@wu»x
’ Yico=Yo=0,  Yijmg = Y1(2) = uo(y(w(2))),

for g given by (2.12). Since 9.;b0(y(w(z))) in the source term is a time independent function, we
now introduce a correction term Y so that ¥ =Y + Y and

(2.23) 0,7 (2) = e5 — bo(y(w(2)).
Then

0z (023 + bo(y(w(2)))) =0,
and Y solves

}_/tt*Az%*a2Y:f
2.24 _ z 23 _
( ) { Y'|t:0 — }/0 — —Y’ thlt:(] = Yla
with

- -1

A= (Id L BIV,Y + BtVZY) . and
f=B'V. [(AA' = [)B'V. V] + B'V. - (B'V.Y;) — A.Y, — (BA)'V.p

(2.25)

In order to handle the term V_.p in the source term f, we need the following lemma:

Lemma 2.1. Let X(y) be a C* diffeomorphism over R® and H be a C' vector field. Then one has
0X 0X, ,0X
8y) divy (det( o) (5y) "H(X ).

Proof. The proof of this lemma basically follows from that of Lemma A.1 in [14], where the authors

proved (2.26) for the case when det(%)y() = 1. Let ¢ be a test function, we denote 1(y) = def (X (y)).
Then in view of (2.9), one has

- oX
s Y(y) (dive H y))dy = / Y(z)(divy H) (z >det(8y) Y
X . 4
- /Rgvx(zp( et(5) ") - Ha)da

0X 0X | -1~ 0X
:_/]R3 vy(w( )det(ay) )(8—y) H(y)det(afy)dy

— 0X.,_1 .. 0X ., _1- 0X
= |, 9et( ) dlvy((@) H(y)det(a—y)>dy

(2.26) (divy H) (X (y)) = det(

This leads to (2.26). O
In particular, if det(a—X) =1, one has
. . 0X |\ -1
(2.27) @mewm:mwaaﬁ H(X(y)),

which recovers Lemma A.1 in [14].

Let us now turn to the calculation of the pressure function in the Lagrangian coordinate. We

denote Y(t,y) def Y (t,y) — Y(y) with Y(y) being determined by

(2.28) Do V(y) = €3 — bo(y).
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Then in view of (2.11) and (2.28), we infer

3 3
Z VyiVy; (aboXiaboXj) = Z VyiVy; ((b6 + aboyz)(bg] + 8boyj))
i,j=1 b,j=1

2
= 3 VyiVys (O V'O, D7) + Via(1+ 0, V%)

3,7=1

2
+2)  VyaVyi (06 V (1 4 05, 0%)).

i=1
However note that Vy - b =0 and (2.28), one has

2 3
2V550 V% + 2> VyaVyi0p V' =2Vys Y VyiOy,)'
i=1 =1
=2Vys Z Vyif)bo (Xl - yz - yl)
i=1
=2Vy3Vy - b
which leads to
3 . . 3 . .
> VyiVyi (0p X0 X7) = Y VyiVyy (05,1060 V7).
i,j=1 t,y=1
As a consequence, we deduce from (2.13) and (2.27) that

(2.29) divy (AA'V,p) = divy (Adiv, (A(9,Y © 8,V = Vi @ W)

On the other hand, it follows (2.28) that Y(y(w(z))) solves (2.23). Let us fix Y (2) = Y(y(w(z))).
Then we find

V(y(w(2)) = Y (t,y(w(2)) = V(y(w(2)) = Y(t,y(w(2)) = Y (2) = Y (t,2).
Hence applying (2.26) to (2.29) gives rise to

div, (det(B~")BAA'B'V..p) = div. (BAdivz (det(B~1)BA(8:Y ® 95 — V; ® Yt))).
This yields
V.p=— V.A'div, (det(B~ ') (BAA'B' — Id)V.p)
(2.30) — V.Adiv. ((det(B~1)Id — Id)V.p)
+ VA Ndiv, (BAdin (det(B1)BA(d5Y ® 03Y — Y, @ Yt))).

The local well-posedness of the System (1.1) implies the local well-posedness of the System (2.12)
and thus the System (2.24). In what follows, we shall only use the System (2.24) to derive the
LY(RT; Lip(R?)) estimate for the velocity field u of (1.1) provided that there holds (1.6).

To restrict the length of this paper, we shall present the details concerning the propagation of
regularities of Y and Y; only in the case when by = e3, (the general result can be done by the same
strategy), which will be enough for us to investigate the decay estimate (1.8). In this case, B = Id,
Y = 0, and (2.12) becomes

2 _
(2.31) { Yie — AyYe — 0,7 = f,

Yji—0o = Y0 =0, Yijt=o0 = Y1,
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with
A=Id+V,Y) f=V, (AL —1d)V,Y;) — A'V,p, and

2.32
(2.82) p= —A;ldivy((AAt — 1d)Vyp) + A;ldivy (Adivy (A(0y,Y ® 0y, Y — Y, ® Y})))

The main result concerning the propagation of regularities and the large time decay estimate for
the solutions of (2.31) is listed as follows:

Theorem 2.1. Let Yy € B2ONB>ONBY N B3 and Y; € B®° N B30, Then under the assumption
that

. def
(2.33) g(0) <co with g(s) = 1050|550 + ||Yol|gs+2.0 + [|Y1]| 550,
for some cqy sufficiently small, (2.31) has a unique solution Y so that there holds
||Yt”zgo(5s,0) + H83YHE§Q(BS,0) + ||YHE;>O(Bs+2,0) + H83YHE§(Bs+1,0)

2.34
(234 4 el gz qgernon + Willyeesao, + VPl smo) < Cleo +8(s) for 5= 0.3

If (Yp, Y1) satisfies moreover that
a(3) + 103300y + ¥l ¥l

2
,00

2.35
(239 H108Yoll oy + Vol 5y + IVl .y < G

2,00 2,00 2,00

for some ¢y sufficiently small, then the solution Y of (2.31) satisfies the following decay estimate
1Yi(0) |z + 103 ()| 2 + |AY (£) || 12
1 _1
H(O5 (1052 (0l + 105Y ()| + 185Y (1) =) < C(8) 1.

Let us remark that with more regularities on the initial data, we can study the decay rate of the
solution in higher Sobolev norms. For a concise presentation, we shall not pursue this direction
here.

(2.36)

3. ESTIMATES RELATED TO LITTLEWOOD-PALEY THEORY

The linearized system of (2.24) reads
{nt—AYt—a§Y=f,

(3.1)
Y=o = Yo, Yi|i=o =M.

As observed in [22, 21, 29], the corresponding symbolic equation to (3.1),
N +EPA+E =0 for &= (&, &) and & = (&,&),

has two different eigenvalues

P £ VIt — 465
> :

The Fourier modes correspond to A, decays like e~*I¢ *. Whereas the decay property of the Fourier
modes corresponding to A_ varies with directions of £ as

(3.3) A(6) = %5 o1 as €] — oo

_ —
€2 (1+ /1 5

only in the &3 direction. Thus in order to capture this delicate decay property for the linear equation

(3.1), we shall decompose our frequency space into two parts: {f = (&4,63) ¢ |€? < 2/&3] } and

{§ = (&n,8&3) €2 > 2|&3| } This suggests to use anisotropic Littlewood-Paley theory in the
analysis of (2.24).

(3.2) Ap =
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In order to obtain a better description of the regularizing effect for the transport-diffusion equa-
tion, we will use Chemin-Lerner type spaces LqT(B;T(R?’)) (see [2] for instance).

DeﬁINlition 3.1. Let (r,q,p) € [1,+00]® and T € (0,+0c]. We define the norms of E%(B;r(R?’))
and L& (B*1°2(R?)) by
def irs r % def js100s v
fullzg gy 2 (218l )+ g sy S 2220 Al 1)
JEZ JALEL?
with the usual change if r = oo.

The connection between the Besov space B® and the anisotropic Besov space B2 can be
illustrated by the following Lemma:

Lemma 3.1 (Lemma 3.2 in [21] and [29]). Let si,s2, 71,72 € R, which satisfy s1 < 71 + T2 < s2
and 75 > 0. Then a € B™™(R3) (resp. LA(B™™)) if a € B"+™ (resp. a € LA(B™%™)) and there
holds

(3.4) lallsreme S llallpriers and lullgs (grmy S llllzz (g
For the convenience of the readers, we recall the following Bernstein type lemma from [2, 11, 25]:

Lemma 3.2. Let By, (resp. By ) be a ball of R? (resp. R), and Cy, (resp. Cy) a ring of R? (resp. R);
let 1 <py<p; <ocandl < gy < q < oo. Then there holds:

If the support of @ is included in 2¢%By,, then

E(|aj+2( -1
19 all 2 ony < 20270 al o .

If the support of @ is included in 2B, then
OB+ 05 —ar
108all s oy S 20l s .
If the support of @ is included in 2*Cy,, then

—kN
lallzpr gy £ 27 ma 10Fallp: g,

If the support of @ is included in 2¢C,, then
—¢N | oN
laller oy S 2777105 all ey pary-

As applications of the above basic facts on Littlewood-Paley theory, we present the following
product laws:

Lemma 3.3 (Lemma 3.3 of [29]). Let s1,$2,71,72 € R, which satisfy s1,s2 < 1, 11,70 < % and

51482 >0, 7 +79 > 0. Then for a € B (R?) and b € B*2™2(R3), ab € BSlJrS?*lJHTQ*%(R?’) and
there holds

(3.5) bl gy 317 S Nl B2

Remark 3.1. Ezxactly along the same line to the proof of (3.5), we can show the following law of
product that for any s > —1

56) 1aVbl[gso < llall i,y [1bllgs+r0 + (161l 1,3 [lall g1,

labllgso < llall 41,3 [bll=0 + 110l 51,3 lallz=.o-

We skip the details here.
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Lemma 3.4. Let s > —1 and ¢ € [0, 1], then one has

(3.7) labll -3 < llallgrollbllgso + llallgs+sollbllz1-so,
1,00
(3-8) labll .-y S llall g 01l oy for ¥ s € [-1,1].

Proof. Let us first recall the isentropic para-differential decomposition of Bony from [3]: let a,b €
S'(R?),

ab=T(a,b) + T(a,b) + R(a,b), where
def

T(a.b) S S 1, T(a,b) € T(b,a), and
(3.9) JEL
j+1
R(a.b) Y " AjaAp, with Ap L ST Ap.
JEL =j—1

By using Bony’s decomposition (3.9) for the whole space variables and the vertical variable simul-
taneously, we obtain

ab=(T+T+ R)(T" +T" + R")(a,b)
=(TT"+TT"+TR"+TT"+TT" +TR' + RT" + RT" + RR")(a,b).
In what follows, we shall deal with the typical terms above. We first deduce from Lemma 3.2 that

£ v \%
1A A7 (TR (a,0)lz2 S22 > 1Sy 18%all oo 2218, AL 12

7 —71<4
'>0—Ny

$25 3 dpe2 7 fallsiobllses
li'—jl<4
' >0—Ng

<dj279°23 |l 1o bl oo
The same estimate holds for TT"(a,b) and TT"(a,b).
Similarly, we get, by applying Lemma 3.2, that

V(T RV L v v
1AAY (TR (a,0) 12 S22 ) Ay Apallr2 1Sy 1 ALb Lo (12)

7' —j1<4
'>0—Ny

$d;279°25 |a gerso bl -0
The same estimate holds for 77" (a,b) and TT" (a, b).
Finally due to s > —1, we have

D, oL v N AV
IA; A} (RRY (a,b))|lr2 $2722 > [|AjAGall 2]l Ay Ajb| 12

J'>3—No
'>0— N

<228 3 dye2 D lfal o bl geo

J'>j3—No
'>0— N

—isol
Sd;277722|al| gro|[bl|s.0-
The same estimate holds for RT" (a,b) and RT"(a,b).

Hence in view of (3.10), we achieve (3.7). Exactly along the same line, we can prove (3.8), the
detail of which is omitted. O

(3.10)
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In order to prove the large time decay estimates of the solutions to (2.31), we need the following
interpolation inequalities:

Lemma 3.5. Let k € N and f € S(R®). Then one has

M WAl S A 0.4 H83f||Lz,

(x Wl

2)  N0sflle> HfH “1 ! ||V83f||L2,

(3) \W*ﬂuz<HﬂE%ﬁg@#M; and
2 e 1

U TR ) Y
2,00

Proof. Note that by virtue of Definition 1.2, for any fixed integer N, one has

72~ D0 NAAIFIZ2 = Y IAALfIT2 + Y 1A A 12

i 2 <N >N

(0ez <X 2N

14 —2¢
(3.11) <Y 2 HfH2 y D G205 1117

I<N 00 >N

JEZ JEZ

2N||f|!2 +272N 03 f|7-
200

Here and in all that follows, we always denote (cj)jez to be a generic element of ¢2(Z) so that

ZJGZ CJ =1
Let us now choose the integer N in (3.11) so that

1
SE A
I£12,_y )
82:002
leads to (1) of Lemma 3.5.

To prove (2) of Lemma 3.5, we first deduce from Proposition 2.22 of [2] that

[l
(3.12) 103112 < 19351 Hvagfllzz.

Ug wihv
al\.')

Yet by virtue of Definition 1.1, we have

_3 _3
1957114 = sup 2728505112 < sup 2”2 > 11A;A70sf|
00 J J £<j+No
3 __ L
< su > 22272 AAY S|
J ¢<j+No

S SUPQJSUPQ S8 £l 2 = ||f||81_1

2

Resuming the above estimate into (3.12) gives rise to the second inequality of Lemma 3.5.
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Along the same line to (3.11), for any integer k, we write

IVFFIF ~ D 2800 F13 + > 22MAATfII3

0—kj<N l—kj>N
JEZ JEZ
< D> el "“)IlfIIQ 1t > G2 os 17
l—kj<N Byl l—kj>N
JEZ JEZL
SV sy 272N 051175
By ?

Taking N in the above inequality so that
1
S
1P /0
BT

leads to (3) of Lemma 3.5.

Finally a direct application of (3) with f (resp. k) there being replaced by V f (resp.

leads to the last inequality of Lemma 3.5. This completes the proof of the lemma.

Lemma 3.6. Let s € R and b € S(R?), one has

(3.13) [1Bllyirs.a S 1101 \33b!\L2

142s,— % ‘
2,00

m [T

Proof. Note that Bz())ﬂ — LP for p € [2,00][ (see Theorem 2.40 of [2]), we have
[blles = I1DIBl 0 SO 5,

(S = (2 i) L)

JEZ JEZ LeZ
1
<(30 A’
(G.0)ez?

For any integer N, we get, by applying Lemma 3.2, that
PR S NN P S b B VNYN 7 2

(j.0)ez? (j,0)eZ?
Z—f 1 2 2
< Z cjz 3 (¢-2(1+25); )y|b|| TR
0—2(142s)j<N Ba.oo
Jez

v grtEieE) e,

J

0—2(142s)j>N
JEZ
3
§22NH6H21+25 5 +27 N”a3bHL2
2,00

Choosing N in the above inequality so that

oV ( Rl )é
Hb||21+29_,
200

leads to (3.13). This finishes the proof of the lemma.

13



14 H. ABIDI AND P. ZHANG

4. L1(B%?) ESTIMATE OF Y

Let Y be a smooth enough solution of (2.24) on [0, T]. The goal of this section is to present the a
priori LL(Lip) estimate of ;. Instead of handling the LIT(B%U) norm of Y; as that in [21, 29], here
we shall deal with the LIT(BQ’%) norm of Y;. For simplicity, we shall denote div, = div, V, = V
and A, = A for short in this section.

Lemma 4.1. Let Y is a smooth enough solution of (3.1) on [0,T]. Then for t < T, one has

1Yzl - 105V I oty TNAY 7o o3y + 1Vl 2 1.y + 105V 5,
+ [ Yill S Ml o,y ¥ Hf)gYoH gk T HAYOHBO . HfH

Leo(8%7) 3

LY(B%3)

(4.1)
LY(B* 3y~

Proof. The proof of this lemma basically follows from Proposition 4.1 of [21, 29]. For completeness,
we present the details here. By applying the operator A;A} to (3.1) and then taking the L? inner
product of the resulting equation with A;A7Y;, we write

(4.2) (HA AYYil[22 + (|8 AF05Y [22) + [VA;ALY |22 = (A;A7 FIA;ALY)

2dt

Along the same line, one has
v v 1 d v v v v

(AJATYulANATY) = = [IANATY [Tz = [10sVAGATY |72 = (A;A7 FIAAATY).

Notice that
d
(B A Yu| AL ALY) = — (B A VAL ALY) + IVA;ATYI7:,
so that there holds
d 1 v v v
= (S1A0;A7Y .~ (8,47 VAL ATY) )
—[|VA;AYY |25 + |05VA;ATY |2, = —(A;AF FIAAATY).

(4.3)

By summing up (4.2) with 1 of (4.3), we obtain

d 3 . 1 .
S2(0) + L IVA AT, + 1105V AANY 2,

(4.4) X
= (AALF | AjALY: = JANA}Y),

where

def 1
) = 5 (

1
1A ATY ()72 + |18, A705Y (B)]|72 + Z|’AjAZAY(t)||%2>
1
— (A1) A,A7AY (1)),
It is easy to observe that
(4.5) Go(®) ~ 8 A7V ()|I72 + [18;A705Y (D172 + |1A; A7 AY (1) 7.
Now according to the heuristic analysis presented at the beginning of Section 3, we split the
frequency analysis into the following two cases:
e When 5 < E‘*‘Tl
In this case, one has
Ge(t) ~ | A;A7Y ()72 + |8, A705Y ()72,

and Lemma 3.2 implies that

3 1 :
VAN T2 + L 10sVAAFY |12 > 2% (1A AFYlIZz + 154705 II72).
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Hence it follows from (4.4) that
A ATY ]| oo (r2) + 1A AT O3Y (| oo (12) + [|AjAFAY || oo (12
(4.6) + 22 (|| A ATl Ly 12 + 18,8705 (| 1y (12))
SIA;ATY |2 + 1A A705Y0 12 + [[A;A7 fll 1 r2)-
eWhen j > HTl
In this case, we have
Gre(®) ~ | A;ATY(8)]1 72 + | A;ATAY (2)][72

and Lemma 3.2 implies that

3 v 1 v j v j v

1HVAJAzYtHQLz + ZHQ%VAJAeYH%z >c (27| A;AVY: |17 + 2%2%) A5 ATY |72)

22€ Y Y
Zcﬁ(“AjAZK"%Q +[|A;A7AY [172).

Then we deduce from (4.4) that

[AATY ]| oo (r2) + 1A AT O3Y || Loo(12) + | AGAFAY || oo (12
22€ o0
(4.7) o S8 AT Yilly o) + 2N DALY | 1y ey

SIAGATY e + [|AA; ALYl 2 + 1A AL Fll i (z2)-

On the other hand, it is easy to observe from (3.1) that

S IAATYiIZ + VA ATV = (BAATY + AJAL | AATY)) .

from which, Lemma 3.2 and (4.7), we deduce that for j > “1
1A ALYl e (2) + 27 (18 A7 Yill 1y 12)
(4.8) < IAGAL Y2 + 22 A ATY [y 1oy + 1858 s o
S 1AGAY |2 + [[AAGAT Yol 22 + [|AGA7 fllzyr2)-
In view of (4.6)-(4.8), we obtain for all (j,£) € Z?, that
(49) 185 ATVl o 12y F 1A A B5Y || Lo (12) + 1 AGATAY || oo 12y + 2% |8 A7 Vel 11 12)
SIAATY 12 + 1A A705Y0l 2 + | A A  AYoll 2 + [A AL Fll Ly r2)-

Whereas by integrating (4.4) over [0,t], we get

v ]' A%
L°°(0t ”VA A Yt”L2(L2 Z”VAJ‘AZ&’:YH%%(LZ)
jAZYﬂILz + 182705072 + | A;A7 AYo| 7

v N 1 v
+1AGAT Fll Ly 22y (1A AT Yl poo 2y + *HAAJAeYHLgO(m))
v v v ].
<A ATYT2 + 18;8705Y0l 72 + [ A;AF A0l 72 + CIAAL FITa 1) + Sl ell 00y
which in particular gives rise to

IVA;A Y| p2(r2) + IVA;AFOsY [ 1212
S A;A Y2 + [[A;A705Y0l| L2 + |A;AFAYG || 22 + [[AG AL fl Ly (z2)-
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Summing up the above inequality with (4.9) and multiplying the inequality by 95 and then summing
up the resulting inequality for (j,¢) € Z?, we achieve (4.1). This completes the proof of the
lemma. ]

Proposition 4.1. Let Y is a smooth enough solution of (2.24) on [0, T|. Then there exist sufficiently
small positive constants, cg, g, so that if

(4.10) ¥ill04 + 105¥oll o3 + 1Yol 3 <o and e <o,

we have

ey IOV by gty Wy Wil 4 Y g
FI¥ Iy gy + IRy o) < C(IFil oy + 10500 + %00l

for any t <T.

Proof. Let us denote

def S
* = sup{ t €[0,7]: HVYHL?Q(BL%) <6}

(4.12) T
We shall prove that for gy and ¢ sufficiently small, 7% = T.

According to Lemma 4.1, it remains to estimate || f|] for f given by (2.25). Toward this

LI(B"3)
and in view of (2.25), we decompose f as

f=fi+f2+f3 with
£ YBY (A= Id)(A—Id)' + (A— Id) + (A — Id)") B'VY;)
2 B (B - 1d)'VY;) + (B — Id)'AY,
f3 &~ (BA)'Vp,

where the matrix B and Vp are determined respectively by (2.21) and (2.30).
On the other hand, in view of (2.15) and (2.16), for by = e3 + ¢ with ¢ satisfying (2.14), we
have

ws(2) | g (y (w, wh), wh)|
za —ws(2)] <e » 730 73 dw’,
23 =~ ws(2)] < /0 Tl (g (m, w), uly] 08

K
<9e / (s (g (wn, ), wly) | duty < 25 K| | e
0

whenever ¢ <

. This proves that as long as € < g def min ( ) , there holds

1 1 1
2[|¢allLoe Al|pallLoo ? 4K |[P3][Loe

(4.14) |23 — ws(2)] <

l\D\'—‘

Now for K given by (2.14), let us introduce a smooth cut-off function 7(z3) so that n(z3) =
0, z3 > 2+ K,
1, =1 <23 <1+ K, Then thanks to (2.15), (2.16) and (4.14), we split As(y(w(z))) given by
0, z3 < —2.

(2.18) as

(4.15) Ag(y(w(2)) =Ag1(2) + Aga(z) with  Aga(z) (1 —n(z5)) A5 (z),
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and
w3z 1 w3\ z ¢ 1
o sl )%(%)(yh(%,ys),ys)dys Jat )a%(%)(yh(%,ys),ys)dyg 0
1€ ws(z b ws(z b
Az (2) =n(z3) | frosl )aim(%)(y (2n, ), ys)dys [ )%(ﬁ)(y (205 93),y3)dys 0|~
0 0

IREAC

0

bl

- ) (Un (20, y3), y3 dy3 foK 022( :
A2 (Zh) == f 8y1( )

) (n(zn, y
0 0 0

o w\o%c?&\o —

Similarly, we decompose As(w(z)), which is given by (2.20), as

(4.16) As(w(z)) =As1(2) + Asa(z) with  Asa(2) (1 = 5(z3)) AR (z0),
and
1 0 0
Az (2) def 0 1 0,
U(Zs)fowg(z)%(m)dys 77(23)f0w3(z)3%2(m)dy3 %
0 0 0
Ab(a) < 0 0 0
Iyt 2 (Tt ¥ Iy ] e e d LUER

Then by virtue of (2.21), (4.15) and (4.16), we find
B—Id= (A" —Id) + (A3 — Id) + (A7 — Id) (As1 — Id) + Az %7 Asy
By
+ Az o7+ AU Ag o + A o7 (A + Aso),

B2

(4.17)

where 2;(2) def A1 (yn(zn, ws(2)), w3(2)).

Lemma 4.2. Under the assumptions of Theorem 1.1, there exists a sufficiently small constant
g9 < €1, which depends on ||V¢||yy2.ec, |V g2, and ||Vh¢>HLoo(H2), so that for € < g9, we have

19— Id]| jo g + 1421l 51 3+l Az — Tdll gy + 11A3] g0 + 1145 5

4.18
(4.18) < CE(HV¢||H2 + I Vnll oo (r2)) < 1.

While it follows from (4.14) and the definition of the cut-off function, n(z3), that

(1= ) [ (ea—bolom s ws(ons 25))waen, 25) d

-1
K+1

= (1 —mn(z3)) g (€3 — bo(yn(zn, w3(zn; 23)), w3(2n, 23))) d23,

so that we deduce from (2.21) and (2.23) that
-~ z3 K+1
Y (2) —/ (63 — bo(y(w(zp, zé)))) dzh — / (63 — bo(y(w(zp, 23)))) dzh

1 -1

—n(e)( [ (es = bly(ulan, ) b~ [

-1

(4.19) K+1

(3 — bo(y(w(zn, %)) dzg).
1
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Lemma 4.3. Under the assumptions of Theorem 1.1 and for € < e3 with €3 < €9 and depending
on [|[Vollwzec, |9l s and @] Lo (m3), one has

(4.20) 105V | 0.y + IVY 1] g < Celills + Il e () < 1.

We shall postpone the proof of the above two lemmas in the Appendix A.

With the above preparations, we now present the estimate of || f”Ll(BO’ 3y Since the estimate to
t

all the terms in f; and f2 given by (4.13) are the same type, let us present the detailed estimate
to the following term:

B'Y - (A= Id)'B'VY}) = (Id+ B} + BY)V - (((Id + VY + VY) ™ - 1d)'B'VY,)

for By, By given by (4.17).
It follows from the law of product, Lemma 3.3, and (4.18) that for ¢ < &5,

H (Id+BL)V - (((Id LYY YY)l Id)tBtVYt)

L}(B%2)
SO+ Bl yy) [ (T + VY +VY) 7! — L)' BVY| 3

<[(Id+vY + VYY)t - 1) BVY| .4
t

and

H (A3’2Ql1_1)tv . <((Id +VY + V}N/)—l _ Id)t[)’tvﬁ)

L} (B3)

S+ 110 = Idl| g A5 |1 = n(23)V - ((Id + VY + VY) ™! — 1d)" BtVYtHLl s

SIV- (d+ VY + VYY)~ - 1d)’ BtVYtHLl 503
Along the same line, one can show that similar estimate holds with A372911*1 in the above inequality
being replaced by the other terms in Bs. This proves that

(4.21) IB'V - ((A— 1d)'B'VY,)| S|(d+ vy +vy) ! - Id)tBtVYtHLl(

Bh3y’
Using the fact that (Id+A)™t—Id = 3°° A" and (4.12), (4.20), we deduce by the law of product,
Lemma 3.3, that for t < T* and ¢ < &3,

L} 801

[((Id+ VY + VY)™" — Id) VBVY| s,

(HVYHLOO(Bl 3, + IV I)I\BtVYtHLl B4

<CO+e) (1 + ¢l + 1ol oo )llBtVYtHLl RN
Whereas the proof of (4.21) ensures that

IB"VYi| S vy

L (BY3) ~ LY (BY2)

Hence, by virtue of (4.21), we infer for t <7T™* and ¢ < e3

(422) BV (A= 1) BV, o, < Cle+8)(1+ 16l + 10l oo a) IV Tally 0.8
The same estimate holds for f; and f2 given by (4.13).

In order to deal with the estimate of f3 given by (4.13), we need the following lemma concerning
the estimate of the pressure function:



GLOBAL SOLUTION OF 3-D MHD SYSTEM 19

Lemma 4.4. Let t < T* and € < & < 3,6 < § for some sufficiently small constants & and §. Then
there holds

< 112
(4.23) IVl C(105Y 12, g+ 1%, 03 )-

LI(B% %)
Let us postpone the proof of this lemma after the proof of the proposition.

In view of (4.13), we get, by a similar proof of (4.21), that

1l oty SN T+ ((Td+ VY + VY) ™! = 1) Vp]| o)

S+ IV g, + 191 )19

B%2)’
Hence by virtue of (4.12), (4.20) and Lemma 4.4, we obtain for t < 7* and £ < £, < 6,

2 Vo |12
1750y 08, < CUIBYIZ, g, +ITEIE,

2

L= (

from which, (4.13) and (4.22), we deduce that for t<T*ande <6 <0,
170y, SO+ D)+ 6l + 160l e g Il g

(4.24)
FIV ) + 1SV, )

Let us denote

def
€0 = min

(4.25) y 410 1
(S . —
b0 2 min(8, 1 (14 [0l + 161 ) ™)
Then we deduce from (4.1), (4.23) and (4.24) that for t < T* and € < £¢,d < do,

IFil e oy + 197 1 ot + IAT - o, + 1l

( + 0llers + 110l Lo a13)) ) and

B.2)

(4.26) 105y 4 +HYtHL1 — puLl i
2 V12

sc(HYIHBO,% 1050l g0+ 1Tl o + 12, oy +I9FI2, 0y ).

Let us denote
« def

T = sup{ t < T Vill gy + 105V 5 gy < 2Cc0 }-
Then we deduce from (4.10) and (4.26) that for ¢t < T,
CC() 3
||Yt||L2 B3 + ||63Y||L2 gidy = m 50007

provided that ¢y < This proves that T* = T*, and there holds

@'

1960 e oy + 1057 e gt + AT o) + 1Fel g
105 g gty + 1l +||Vp||L1 )
C _ _
<730 (Wil 03 + 195%00 03 + 1A%l )

for any t < T*. Then for ¢y < min(#, %), by taking 6 = min (o, 2Cco), for dy given by (4.25), in
(4.12) shows that T* = T and (4.11) holds for any ¢ < T. This completes the proof of Proposition
4.1. ]

Let us now present the proof of Lemma 4.4.



20 H. ABIDI AND P. ZHANG

Proof of Lemma 4.4. We first deduce from (2.30) that
\|vp\|L1 50h <||det(8‘1)(BAAtBt 1d)Vpl|
(4.27) + ||(det(B~)Id — Id) vaL}(BO,%)
+ || BAdiv(det(B~1)BA(0Y ® 05V — Y, @ Y3)) |

L}(B%%)

i)
Note that
BAA'B! — Id =(AA' — Id) + (B —Id) + (B — Id)!
(4.28) + (B — Id)(AA" — Id) + (B — Id)(B — Id)"
+ (AA" — Id)(B — Id)" + (B — Id)(AA" — Id)(B — Id)".
Let us deal with the typical term above. Indeed it follows Lemma 3.3 that

[(AAT — 1d)(B = 1d)'Vpl,, o3 SIAA =D _ o3 B =14)Vpl 1y oy

(4.29)
SUTT N,z g3, + IV ¥ 03 B = 1)V, -

And for B; given by (4.17), one has

1B V| ) S 1Bl g 4 [IVPll

LL(B"2 LL(B*2)
and Lemmas 3.3 and 4.2 ensure that for e < ey
(A3 22, 1) V|| S+ 120 - IdHBl,l)IIA IglI(1=n(23)) VPl

SVl

L}(B%3) ~ LY(B%%)
LY(B%3)

The same estimate holds with A3722l1 in the above inequality being replaced by the other terms
in By given by (4.17). This leads to

|1B5Vp|| S IVl

LB gy~ LB 3y
which together with (4.12), (4.20) and (4.29) ensures that for ¢ < e3

I(B — Id)"Vp]| S Vo

LI (B%?) LI (B2

and

(4.30)  [I(AA" = Id)(B - Id)thllL%( 03y S Cle+0) (148 ms + 19l o)) IV

Similar estimate holds for the other terms in (4.28). Furthermore, due to the special structure of
the matrix B given by (4.17), we get, by a similar derivation of (4.30), that

(431) [|det(B~)BAAB' = 1)]| 1, oy < Cle+8) (14 1l + 19l sy IVPI Ly gt

The same estimate holds for ||(det(B~1)Id — Id)Vpl||

Along the same line, we can show that for € < 3,

| BAdiv(det(B~")BA(0sY ® 93 — Y, @ V}))

L}(B%3)

L (B3
2 v 112
loyeoty < CURTI, oy + TR, )

from which and (4.31), we infer
IVl g3, <O+ 01+ 100 + 10l IVBl o, + 10512, g+ 92, )

which leads to (4.23) by taking ¢ < & and § < § with & and § being given by

_def . < def 1 -
e Cmin(eg, 8) and 5L (14 [l + 0] i)
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This completes the proof of Lemma 4.4. O

5. THE DECAY OF THE SOLUTIONS TO (2.31)

In this section, let us fix by = es, then the matrix B given by (2.21) equals to Id. Then the
System (2.12) then becomes (2.31). For simplicity, we shall denote V, by V in this section.

Proposition 5.1. Let Y be a smooth global solution of (2.31). Let

def
Vi[5 + 18:Y0 70 + [AYD 172

If we assume that

Eo + sup (HVY(t)HBg HIY Ol -y + YOI -y

(51) t€R+ BQ oo 2,002
F105Y ()15 + YO 5 + IAY O3 ) <m.
and
def
(5.2) At) = Y@ ot T YOl -1 + YOl 5.3 < Ao
,00 0000 2,00

for some Ay > 0 and some sufficiently small ng. Then one has
(/\0 + E0)2E0
(Mo + Eo)? + EoV/t

Let us remark that the proof of this proposition is motivated by similar ideas in [17, 26], which
are formulated in the Eulerian coordinates. Moreover, compared with the result in [26], here we

(5:3) @)l + 10sY Ol + Y @)1 <

work out the limiting decay rate, namely, here the solution decays like (t) %, while the solution in

[26] decays like (t)~* for any s €]0,1/4].

Proof. We first get by a similar derivation of (4.4) that

d

1
= (SUWI3. + 105Y 3 + ZIAY [:) - 3 (v1AY))

3 1 1
+ 3 IVYillEe + JIVsY (17 = (F1(Yi = JAY)).

While by performing L? inner product of (2.31) with —AY;, we obtain

1d
5 IVYi@)L2 + VoY @)[172) + AVl 72 = —(f |AY).
By summing up the above two inequalities, we obtain
d 1
= (GUVilB + 105V I3 + JIAY[3:) — 1(%IAY))
1
(54) + IVl + AV + £ VasY 2,

= (FI(Y; ~ A — AY)),

for f given by (2.32). Let us now deal with the last line of (5.4) term by term.
eThe estimate of (V- ((AA" — Id)VY;)|(Y; — AY — AYy))
Due to

(5.5)  AA' —Id=(A—-Id)(A-Id)'+A—Id+(A—-Id)' and A-Id=)» (VY)"

n=1
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we get, by using the classical product law:

3
(5.6) labllze S llall g lIbll e for || <5,

and (5.1) that

|AA" — Tl 3 <COH+ DY 8 IVY 4
<C|VYll 43,
and
| (V- ((AA" — Id)VY;)|(Y; — AY)) |
5) S MAA = I1d)VYy | 2 [|IVYel 2 + [[(AA" = Td)VYy | g [| AY ]| 2

SIMA" = 1d|| 5 (IIVYi]1Z2 + |AY:]72)
SIVY L3 (IVYil72 + | AY:l[72).
To deal with the term (V- ((AA" — Id)VY;)|AY) , we write
—(V -((AA" — 1d)VY;)|AY)

d

(5.8) == 2 (V- (AA" = I)VY)|AY) + (V- ((AA" =~ [d)VY)|AY))

+ (V- ((0((A=Id)(A—Id)") + O A+ 0, A)VY)|AY) .
By virtue of (5.1) and Lemma 3.6, we deduce
[(V - (AA" = T) VY ) |AYL)[ S (1 + (VY [|2e ) [ VY [l AY | pa [ AY | 2

SIVIE, IVIE, ) I905Y | 2| AV 2,

2,00

[
> vl

2,—
2,00
and

[ (V- ((0((A = [d)(A — Id)") + 9. A+ BA") VY ) |AY )]
< (L [VY [l) (IVY I AY || | AVl 22 + [AY 34|V Yzl 2)

1 1
< (|Y||;§,% 1,y IAYilzz + IVl g IVYillz2) IV 0sY | 2.

Hence, we obtain

— (V- ((AA" = Id)VY,)|AY) £ d (V- ((AA" = Id)VY)|AY)

~odt
(I g + 1Y ooy ) IVOY 2 (19l + |AY ] 12).
2,00 2,00

eThe estimate of (A'Vp|(—Y; + $AY + AY}))
It is easy to observe that

(5.9)

1
(A'Vp|(-Y; + ZAY + AY}))

(AVPI(GAY +AY)) — (V- (AD)¥E) + (V- A'pl¥)
S+ VY ) (JAY | 2 + | AYil|12) [V 2
+ (U IVY ) [Vl 22 + |AY | o[ il ) 1 22
On the other hand, it follows from (2.32) that
IVplze < C(IVY 1 Vplls + [ABsY © 85Y = ¥y @ ¥i)]| s )



GLOBAL SOLUTION OF 3-D MHD SYSTEM 23

so that as long as ng in (5.1) is sufficiently small, we deduce from the product law (5.6) that

VP2 <C(1+ HVYHL;”(B%)) (85 @ 85 —Y; @ Yy)

<C(IosY |2 5 + I, )

e
5 1 5 1
<C(IVOBY 2105117 5 + VYl l1Yel 2 5)-
Along the same line, we deduce from (2.32) and the law of product (5.6) that
Iplls <C(JAA ~ 10Dl + [ A@Y 8 05Y Vi Yi)2)

<C(IVY I3 9Pl + (14 IVY I 3) [ (@sY @ Y = Vi@ V)|l ,0).

then under the assumption of (5.1), we have
Pl <C(10sY (174 + [ Vel 74)

1 3 1 3
<C(10sY N1721VOsY [ 72 + V2l 7211V Yl Z2)-
Therefore, by applying Lemmas 3.5 and 3.6, we arrive at

1
|(A'Vp|(=Y: + JAY + AY}))|

2 1 1 1
Ga0)  S(V1% 1905+ 1AYilie) (I98Y 1005 S 5 + ¥l Il )
2,00
1 3 1 3 1 3
+ (I9Yillz + IAY ]y 1l 9%l 2 ) (195Y 12V 0sY 112, + ¥l I 9 Yill 7 )

eThe closure of the energy estimate
Let us denote

Fo(t) % def1 (,

Y63 + 105V ()3 + Z1AY (D))
(5.11) - f(Y;]AY) + (V- ((AA = Id)VY)]|AY)  and

def
Do(t) S| VYi(t) |31 + 10sVY (£)]3 2.

Then by resuming the Estimates (5.7), (5.9) and (5.10) into (5.4), we obtain
d

1
G Po(t) + 7 Do(t) < C(HVYH g HIVI ooy HIVH oy + 1105V 5 + (12l 5

200 2o<>
1 1 1
057 2 + 1¥ill2 + IAY | g IVl I ¥l 2 (105Y 122 + 1%1122) ) Doe).

Thus under the assumption of (5.1) and

1
(5.12) C sup ([|03Y (1)] 12 + [|Y(t)] 12) < R
teRt
we infer
(5.13) L p) + L Do) < 0
: dt 0 ] 0 >~ U,

which in particular implies
(5.14) Eo(t) < EO for t > 0.
Note that [|[VY||zec(ro) < 170, we have

(5.15) Eo(t) ~ [Ya(®) |52 + 105Y () 70 + IAY ()17
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Thus if 7o in (5.1) is sufficiently small, there holds (5.12) and (5.13) for all ¢t € RY .
On the other hand, it follows from Lemma 3.5 and (5.2) that

4
Eo(t) < C(A@) + [[VYe(t) |2 + [[VOsY ()| 12) ® Do(t)
Then we deduce from (5.13) that

W=

< C(Mo + Eo)3 Do(t)5.

W=

d
%Eo(t) + (N + Eo)T1E3(t) <0,

which together with (5.15) leads to (5.3). This completes the proof of Proposition 5.1. O

Proposition 5.2. Under the assumptions of Proposition 5.1, if we assume moreover that

G16) 0 (IVYOllyg + IV¥O ez + IV @) <o amd |9V gy <C

2100 LE(BiLG2)
for some sufficiently small ng. Then one has
def 2 2 2 NE,
5.17 ¢1(t) = ||Yi(t + ||osY (t + |AY (¢ < ——
(5.17) 1) = Vi@l z2 + 193Y (@) |72 + 1AY ()72 X+ B

with Eq def ¢1(0) and \y being given by

(5.18) X(0) € Ao+ B+ VY ()25 < A

2,00

Proof. We first get, by taking ), to the System (2.31) and then taking the L? inner product of the
resulting equation with 9yY; — 1Ad,Y — ALY, that

d 1 1 1

= (GUBYel 3 + 100 I + Z10kY 1) = 7 (0¥ A0Y))

3 1
(5.19) + JIVORYillZ2 + [ A0Yil 72 + £ I VOkDsY |72

= (akf|(8kYt — iA&kY — A@kYt)) for k= 1, 2, 3.

We now deal with the last line of (5.19) term by term. It follows from the classical product law,
(5.6), that

[(V 0 ((AA" = I) VY1) (kY1 — AdYY)) |

S 06 ((AA" = 1) VYY) | g1 (106 Yl 22 + A0 Ye 2)

S (VY 43 180k Yl 2 + IVORY | 43 | AY2 ] 22) (10 Yell 22 + [| A0k Y2 12)

S IVYl 3 + VoY [ g ) (10Yl72 + [AY 72 + [AOY:72).

(5.20)

Similar to (5.8), one has
— (V- 0k ((AA" — Id)VY;) |ADY)
d

- (V- 0k ((AA" = Id)VY)|[AOLY ) + (V - Ok ((AA" — Id)VY') |ADY;)

+ (V-0 ((8:((A = Id)(A = Id)") + 0L A+ 0L AY) VY ) |ADLY ) .
It follows from Lemma 3.6 that
|(V - 0k ((AA" — Id)VY)|AG,Y}) |
SN0k ((AA" = I)VY)|| g1 | ALYz 2
S A+ IVY ) (IVY (| aIV20kY | 1o + VY [174) | A0k Vil 12
S (HYHB%% + IIYHBS,%)(HVé’sYH?p + | A YiI72),

2,00 2,00
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and

|(V - 0k ((0:((A — Id) (A — Id)") + 9, A+ 0L A) VY )| AG,Y )|

S A+ VY L) (IVY (| |AGYel| 12 + ([ VY [ Lal| Al 2 + IV Y2 2| AORY [| 1) [ AOLY | 1o
S (HYH 24 +||Y|| 5”)(HV83YHH1+HVYtHH2)
This gives
— (V- 0k ((AA" = Id)VY;)|AOY)
d
(5.21) = (V-0 ((AA" — Id)VY)|ADLY)

(Y1 2y + 1Y ”)(HV&%YIIHI +[[VYil[32)-
2,00

,00

While we deduce from the classical product law, (5.6), that
1
| (Ok(AVP)|(~0kYs + [ ABY + AdLYy))]
SIA VD g (IVYil g2 + |A0LY || 2)
SA+IVY L IVPlg (IVYill g2 + 1A0:Y ) 22).
On the other hand, we infer from (2.32) and the law of product, (5.6), that

191 SIAA" — ID)Vp| ju + [Adiv(A@sY © 85Y — ¥ © Y1) |
SIVY g311¥pli + 0+ 191 )IAGY & Y =50 X

which together with, (5.1), (5.16) and the interpolation inequality: HaHB% S ||a|| 1HaH
that

2o ensures

VPl S+ VY s + VY [5) (105Y 1] 45 IVOY I + [Yill 43 VYl 1)
SIVOY |4 + IVYal 2.

Hence under the assumptions of (5.1) and (5.16), we obtain

(5.22)

1
(5.23) }(ak(AtvP)|(*8kYt+ZAakYWLAakYt))| S (IVY | g + IVYellar2) (IVOsY |71 + [ VY2 [772)-
Let us now denote

B (1) 41 5 IVl + [ V05Y (8)[3 + 3uw<t>||ip)

3
—Z(VYt | VAY) +Z V- 0k ((AAT — 1d)VY)|A8,Y),

(5.24) —

Dy (t) €AY ()12 + 105 ()1, and

Ev(t) €Eo(t) + Er(t), Di(t) & Do(t) + Di(t).
Note that

3
S (V- 0 ((AAT — Id)VY)|A0Y )| < VY| L VY |2,
k=1
so that there holds
E(t) ~ Vi) 7 + IVOsY ()71 + IVY (£)]1 %0,

5.25
(5:25) Eut) ~ [1Va(t) s + [95Y O + [AY (5]
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Then by resuming the inequalities (5.20), (5.21) and (5.23) into (5.19), we obtain

d 1.
(5:26) B0+ D10 < C(IVY g +IVY g + IVillz + 1Y oy + 1Y 5y ) Dr).

200 2o<>

By summing up (5.13) with (5.26) and using the smallness assumptions (5.1) and (5.16) leads to

d 1
2 —F —D1(t) <
(5.27) o 1()+16 1(t) <0,
which in particular implies
1 t
(5.28) Ei(t) + 16/ Di(t)dt' < E1(s) Vs €[0,t].

In particular (5.25) and (5.28) ensures that

(529) ()% + 105Y ()% + IAY (O)]3 + / (VY% + IV05Y (8)]3)de’ < CE.

Then we deduce from Lemma 3.5 and (5.25) that

2 1
Ei(t) <C(ho + Eo + VY ()17 + VY (1)1 31 + IIVY(t)IIZg 1) D} (t)
2,00

wlrn

1
<C(Mo+ E1 + HVY(t)HZg,_%) Dy (t)

2,00
4 1
<o D (0,
which together with (5.27) ensures that

d
S Bt + AT EL () <0,

which leads to (5.17). This completes the proof of Proposition 5.2. O

Proposition 5.3. Under the assumptions of Proposition 5.2, one has

(5.30) 1Y (0)I[72 + 195Y ()3 + 105Y (8)][5 < (1)
Proof. Tt follows from the classical product law, (5.6), that
(V- 05((AAT — 1d)VY;) | AdsY)|
(5.31) < (15 ((AAT = I)VYy) || 1|05 | 72
S (VY 43 10Yell o + VYl 3 10Y ]l g2 ) 195 | -

»MCO

We denote
def1 1 1
E} ) E2(106Yi0) s + 103Y ()3 + 4105 (9]3) = 5 (05Y; | 95AY),  and
. d f
D}(t) S(IVIsYi(t) | + 103Y (£)[1%,-

Then resuming the Inequalities (5.20), (5.23) and (5.31) into (5.19) for k = 3 gives rise to

d

1.
thl( )+ D1 () S C(IVY | 43 +HIVY |l g2 + VYl 1r2)

4
< (10sYell 2 + IV Yl e + [IV05Y ([ 0),
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from which and the smallness condition and (5.1), (5.16), we infer
d

1.
SEND) + DY)
<C

8
(VYN 55 + VY Nl g2 + 1Vl ) (195YelI72 + VY22 + [ VO5Y [130)
<0(
which together with (5.28) yields

IVY 43 + IVY Il 5 + IVYillg2) Di(t) < CnoDa(t).

(5.32) E3(t / D3(t") < E3(0) +On0/ Di(t')dt' < C(E3(0) + By).
Moreover, note that £3(t) < D;(t), for any 0 < s < t, we have
d . )
E((6 = 9)BYW) + (¢~ )P} <EXO) + C(t — 5) (19 g0 + IV g2 + [V ¥ill2) D (1)

<C(1+ (=) (IVY 1 + IVY g2 + IVYell1n) ) Da(8).

Then in view of (5.3), (5.17) and (5.28), we get, by integrating the above inequality over [s,t] and
then taking s = % that
t
LB ( / Yt -+t [ (IVY @)l + VY @l + V%) ) Da(6) dt/)
2

<C (E'l(t/z)+<t>i tt (t’)dt’)

2
<C{) Ea(t/2) < C(0)%,
which together with (5.32) leads to (5.30). This completes the proof of Proposition 5.3. O

6. PROPAGATION OF REGULARITIES IN THE LAGRANGIAN COORDINATE

In this section, we prove the regularity estimates, which are required by the last section, namely,
(5.1), (5.2) and (5.16).

Proposition 6.1. Let s > —1 and Y be a smooth enough solution of (2.31) on [0,T], which
satisfies the Inequality (4.11). We denote

def,

But) E¥ill e gy + 105 | e ey + 1V 12 o120,
1105V 72 gesroy + 1Yellz2gerroy + 1¥ell L eraoy + VPl Ly 50.0)-

Then under the assumption of (2.33), we have
(6.1) Eq(t) Sco+ 1|03Y0]|gs.0 + Yol gs+2.0 + ||Y1]|gs0  for t €]0,T].
Proof. In view of (2.31), we get, by a similar derivation (4.1), that

HY;HE?"(BS’O) + ||63Y||Z§O(Bs,0) + HY”E?O(BQ-&-S,O)
(62) + Ha?)YHE%(BSJFLO) + HY;‘HE%(35+1,0) + HYZHL%(BSJFZ!O)

Sl93Yol[gs0 + [Yollgetzo + [[Yillgso + ([ fll Ly s.0)-

Let us now handle term by term of || f[|11(zs.0y for f given by (2.32). It follows from the law of
product, (3.6), that

IV ((AA" = I)VY3)]| 1 gy SIAA = Tl e o) VYAl y 0 3

AL =1y Vil ey,
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Note from (4.11) that

VY]] < Ol Nl 524y < Ceos

Lgo(BY7) (B>3) =

and thus by the law of product, Lemma 3.3 (5.5) and (4.11), we have
| AA" — |, . 5 < CIVYl, o 3, < Cco, and

(6.3) s B

||AAt — Id”LtOO(Bs+1,0) S C(l + HVYHL?O(BL%)) HY”L?O(BS‘FQ,O) S CHY”L?O(BerQ,O).

So that by virtue of (4.11), we infer

64) [V - ((AA" = Td)VY3) || 1 g0y SC (1Y Ilgeo+20) IVl s g8  + collYillp sera0)
<Ceo([[Y || Lo mo+20) + HYtHLg(BH%O))
Similarly we deduce from (2.32), (3.6) and (4.11) that
VDl L1 50y SICAA" = Id)Vp| 11 g0y + [|Adiv(A(D3Y ® 03V — Y, ® Yt))HLl 550)
SI(AA" - Id)| Loty I VPl so0) + I(AAT = 1d) | 7oe (5140, 1 VP
+(1+A- Id||Loo b

+ [ VA Lo 1450y | A(B3Y © 3V —V; @ V) HLl(
t

L} (B%%)

HA (33Y ® 05Y —Y; ®Y;) HLtl(BlJrs,O)

Bh3Y’
Yet it follows from (4.11) and the law of product, Lemma 3.3, that

4@y 205 - Y@ X,
t

SO+ IA=Id]l gy )(IlﬁexYHi2 R S + vl < 0,
t

2(B" 1))
and
[A(0sY ® 85Y —Y: @ V)| 1y 5150
SO A A= Tl egven) (105Y 17, o gy + IV, 0y)
(AT g )(\IasY\\L2 s H83YHL2 g0y + Vel

<Ccq(co + IVl Lgo(s2ts0) + 103 || 21450y + [Yell L2 (145.0y)-

LQ Bl g)”)/t”L2 Blts, 0))
Hence in view of (4.11) and (6.3), we get
(6.5) IVl Ly g0y < Ceo(co + 1Y Lge 2450y + 105Y || 21450y + [ Yell L2145,y
Therefore thanks to (3.6) and (4.11), we have
1Al 5.0y S0+ A= Tl o )19l seny + (14 [V A )
<Ceo(co + ||Y||L5;°(B2+370) +1105Y || 21450y + [ Yell L2(1+0))
which together with (6.4) ensures that

L} (B*?)

[l L1 s0y < Cro (Co + [Vl zge (s+20) + 103Y [ L2(gsr1.0) + Vel L2 (s +1.0y + HYtHLg(BsH,O))-
Then by resuming the above estimate into (6.2) and taking cg to be sufficiently small gives rise to
Vel 7oo 0.0y + [108Y [ 700 5.0y + 1Y Wl 700 25,0y - [103Y [l 2 041,09

Vil 22 g0y + Vil 320

<C((co+ 195Yollgeo + [¥ollgs20 + I¥illseo ),
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from which and (6.5), we deduce (6.1). This completes the proof of the Proposition. O

An immediate corollary of Proposition 6.1 and Definitions 1.1 and 1.2 gives
Corollary 6.1. Under the assumptions of Proposition 6.1, one has
1¥illzae ey + 195 e ey + ¥ o aney + 1%l 2 ey
(6.6) + H83Y”L2T(Hs+1) + HYtHL,}F(Hﬂs) + ||VP||L%(H5)
SC’(CO + [|05Y0]|gs.0 + || Yo/ gs+2.0 + HY1HBS,0> for any s> —1.

Proposition 6.2. Let Y be a smooth enough solution of (2.31) on [0,T], which satisfies the
Estimate (4.11). Then under the assumptions of (2.33) and (2.35), One has

67 1% g IVl oy FIY ooy IV ooy # YTy < Clent o)

2 (Byoo?) L3 (8,7 L3 (8,7 L (B 2) L (B2.2)
for any t <T.
Proof. We first deduce from Proposition 6.1 and (2.35) that
(6.8) Eo(t) + Es(t) < C(eo + do)

for E4(t) given by Proposition 6.1. While in view of Definition 1.2, we get, by a similar derivation
of (4.1), that for all s € R,

Y; Y < Yo Y. Y; .
6.0) Wil oo IV ovncy STy + v+ Wil + A1, ey

2,00 t 2,00 2,00 2,00 2,00 ,00

e The estimate of ||Yt||~ o1 and ||YH~
t (‘82 ooj) t
It is easy to observe from Definition 1.2 that

(B, ooé)

lall .-y Slall®,, _yllall'? , with s=6s1+(1—6)s2 and 6 €0,1],
200 zéooj B;Q’7§
from which and (2.35), we infer
(6.10) 1030l gt T 1Yol ot T Y1 ot S Cdo.

OO

Then thanks to (6.9), we only need to deal with the estimate of || f HNl(BO 1 ) Indeed according to
Lt 2:00

(2.32), we deduce from Lemma 3.4 that
£l < (A4 = 1) VYAl

1+ APl
vicdy TV oy

S AA" — 1d| oo .0y [ Yell 1 2.0y + (1 + (A = Td] oo (81.0)) VP 11 0.0y
S 1+ VY|

I(BO -

6.11)
( 1Y [l e g2y 1 Vil 3 20y

L Bl 3 )
+(1+ 0+ ||W||L?O(BL%))kuLgo(Bm)) IVl 3 g0.0)-
Yet it follows from (2.32) and the law of product, Lemma 3.3, that
VDl 00y S II(AAT = Id)Vp| 13 g0y + || Adiv(A(B3Y @ B3Y - Y; @ V7))
SIVYN 514 IVPI L o0)

[y

+ (14 HVYHLOO(BI )[[A(OsY ® 05 — ¥y @ Yi)|| 11 1.0y
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from which, (4.11), Lemma 3.3 and Lemma 3.1, we infer
VPl 100y S A(BY @ 03Y — Y @ Ye) |l 110y
S (L4 19Vl ) (0012, o+ IV, )

6.12
(6.12) SIYIE, o + %2, ,

B

< H@:’)YH2 + || t”2

L2510 12510’
Resuming the Estimate (6.12) into (6.11) and using (6.8), we obtain
111, L0 SV Mg s2.0) Y2l L3 (2.0) + (co + 60) (1 + 1Y ]| e 5209 )
(6.13) =)
<C(co + o).

Thus in view of (6.10) and (6.9), we conclude

Y, Y < .

(6.14) \M%ﬂ@jﬁWkag%faw+M
e The estimate of HYt||~ ,_1 and ||YH~ 1
L B,.2) L (5.7

In view of (2.32), we get, by applying the law of product Lemma 3.4, that

<|(AA" — Id)VY; At
WM% WJK )t”wx%+H ML@Q)

SIAAT — 1d|| oo 1.0 || Vill 13 2.0y + [AAT = Td|| oo (1.0) 1 V2| 13 550
+ (14 A = Id|| oo 5810)) [ VDIl 13 g3.0) + (1 + [[A = Id]| oo (581.0)) [ VDl 13 0.0
SV os 20y Vel 1 5.0y + (14 1Y oo (82.0)) 1V Dl L3 3.0y
+ (LY e ss0)) (VPN L1 o0y + Y2l 21 520))
from which, (6.8) and (6.12), we infer

Imbw %sc@+%y

While due to (2.35), one has

195 Yoll 5 + Yol sy +I1¥1] =t < Co.

,00 200 oo

Thus we deduce from (6.9) that

(6.15) el ot IV sy < Clco+ o).

t ( 2,00 ) L?O(BQ:ooz)

e The estimate of ||YH~ 1,
L (Boo 2

Again in view of (2.31), we get, by a similar derivation of (4.1), that

A g g
S +\|Y0||Bl_l + vl _1_,+|\f\|~ Dty
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To deal with the estimate ||f|]~1(871 7%), we deduce from (2.32), the law of product, Lemma 3.4,
that -

70, oty S NAA — TDTI oy (1Y U IVPI, oy

0_7
OC’)O%) v t 00,002)

SRV (R ||wtu~ ooy, TIVPI, ooy,
oooo t
<
= HVYHE?O(BL%)\DQE% ) 4 LS
While it follows from (2.32), Lemma 3.3 and (4.11) that
Vol S, <[ A(D3Y © 95V — Y;®Y2)H~ e

<||03Y||~ &) H(?SYIL 2std) +HYtHL2(612)II t||~2( 0~}
<C (aY . vill. . )
<Ccol |03 HL%(BO;‘O%)JFH tHLg(Bﬂg,é)

=

Therefore, we achieve
f <Cco< Yi| + ||03Y + || Yzl )
| HL}(B » 21) | t”Ll(Bl’ 1‘1) | HL?(BO’ 3 | t”Lf(BS;V?)

00,00 + 00,00 oo,oo)

Resuming the above estimate into (6.16) and using (2.35) gives rise to

< .
6.07) Wl ot F IV ooy IOV, oy WV, oy IV, oy < G

BY -3
00,00 ) ( oooo oooo 00,00

Finally it follows from Deﬁmtlon 3.1 that
el soh S < [lall y forany pe[l,00].

~ 5= 3

,00 LOO(BP ) )
Then by summing up the Estimates (6.14), (6.15) and (6.17), we conclude the proof of (6.7). O

7. THE PROOF OF THEOREMS 1.1 AND 2.1
Let us first present the proof of Theorem 2.1.

Proof of Theorem 2.1. In general, the existence of solutions to a nonlinear partial differential equa-
tion can be obtained by performing uniform estimates to the appropriate approximate solutions.
Here for simplicity, we just present the a priori estimate for smooth enough solution, Y, of (2.31).
Indeed under the assumption of (2.33), we first deduce from Proposition 4.1 that Y satisfies the
Inequality (4.11). Then it follows from Proposition 6.1 that there holds (2.34), which ensures the
global existence part of Theorem 2.1. The uniqueness of such smooth solution is standard, we omit
the details here.

In order to prove the decay estimate (2.36), we need to verify the smallness conditions (5.1) and
(5.16), which are guaranteed by (2.34) and Proposition 6.2 provided that there holds (2.35). This
completes the proof of Theorem 2.1. O

Now we are in a position to complete the proof of Theorem 1.1. Let us first recall Proposition
6.1 from [29]:

Proposition 7.1. Let by — e3 € H*(R*) and ug € H*(R?) for s > 3, (1.1) has a unique solution
(b,u) on [0,T] for some T > 0 so that b — ez € C([0,T); H*(R?)), u € C([0,T); H*(R?)) with
Vu € L*((0,T); H(R?)) and Vp € C([0,T]; H*~1(R3)). Moreover, if T* is the life span to this
solution, and T* < oo, one has

N
(7.1) / (I9ut)]| = + [B(0) [2) dt = oo.
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Proof of Theorem 1.1. Given initial data (b, up) which satisfies the assumptions of Theorem 1.1,
we deduce from Proposition 7.1 that (1.1) has a unique solution (b, u) on [0,T*[ such that for any
T < T,

b—e3 € C([0,T]; H¥(R%)), weC([0,T); H*(R?) with Vu e L*((0,T); H*(R?)).

Moreover, it follows from the transport equation of (1.1) that

6@z < ooz exp (19l g o) ) -

Therefore, by virtue of Proposition 7.1, in order to complete the existence part of Theorem 1.1, it
remains to prove that

-
(7.2) /0 IV ut) || L dt < oo.

Toward this, we introduce the equivalent Lagrangian formulation (2.12), which has been presented
in details in Section 2. Indeed, according to the derivation in Section 2, especially (2.15) and (2.16),
one has

Y1(2) = uo(yn(2n, w3(2)), w3(2)) and Yi(t,y) =u(t,y +Y(t,y)) with
Y (t, (yu(2n, ws(2)), ws(2))) = Y (2) + Y (t, 2),

with Y (z) and Y (¢, z) being determined by (4.19) and (2.24) respectively.
On the other hand, let us recall (A.3) of [29] that

(7.4) [uo@p, < C([V¥|r=)lullgy ~— for se]—1,1[.

(7.3)

While it follows from (2.19), (A.3) and (A.7) that

(7.5) 1Bl < Ha <2 for €< ey.

dy
LT
Thus by virtue of (2.21), Lemma 3.1 and (7.4), we infer
1¥ill oy < CIBllz=) ol 53 < Clluoll

So that under the assumption of (1.6), we deduce from (4.20) and Proposition 4.1 that for any
t <T* and ¢ < g,

(7.6) IVY Lo (zoe) + IV Yell Ly (1ov) <||VY||~ B4 +HYtH

Hence it follows from (2.11) and (7.3) that for any 7" < T*
T T T ~
[ IVl de < [V Yi0l de < [ |ABTil0)] 1
0 0 0
T —
U+ 19V gty 197 By [ V5300

T
gc/ V. Y;(t)|| e dt < Ccy.
0

This proves (7.2) and thus the global existence part of Theorem 1.1 is proved.

In the case when by = es, by virtue of (2.6), (2.8) and (2.11), we find that Y (¢,y) determined by
(2.11) solves the System (2.31). Moreover, there holds
(77) YvO = Oa b(t’X(tvy)) =e€3 +83Y(t7y) and u(t,X(t,x)) = }/t(tvy)

Then under the assumptions of (1.6) and (1.7), there hold the Inequalities (2.33) and (2.35) so that
by virtue of Theorem 2.1, (2.31) has a unique global solution Y which satisfies (2.34) and (2.36).
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On the other hand, due to divu = 0, we have
16(t,-) — esllrz = [Ib(t, X (¢, -)) — es| 2 = |03Y (£) ] 2,
IVb(t, )|z = [AVB(E, X (2, )2 = [AVIY ()] 12 S IVIY ()] 2,
and
IV20(t, )| 22 =II(A'V)?05Y (1) 2
<C(1+ IVY e (100 + [IV2Y 2o 0y VY (8) | 11
SO+ 9V gy, + 192V 30)) IVOY Bl s < CITOY (1)
Exactly along the same line, one has
lut, )z = lut, X))z = [Ye(®)l 2,
IVult, )z = [AVu(t, X (¢, )2 = A VYOl S IVYe(t)]l L2,
IV2u(t, )|z = I(A'V)?Ya () 2 S IVYe(®)llans
which together with (2.36) ensures (1.8). This completes the proof of Theorem 1.1. O

APPENDIX A. THE PROOF OF LEMMA 4.2

In this section, we always denote ¢ = (¢n, ¢3),y = (yn,y3) and z = (zy, 23). The proof of Lemma
4.2 will be based on the following two lemmas.

Lemma A.1. Let y(w) be determined by (2.15) and g(zy) def fOK G1(yn(2n,93),y3) dys. Then for
¢ < &4, which depends only on ||V¢||yy2., one has

(A1) gtz < CK( Y IVEGillzgz)) and [Vugill < CK( Y IVEViGillzg 2y )
|| <2 o <2
Proof. We first deduce from (2.18) that

®n
14+ ¢e¢3

1 1 .
EATES GKHVh¢HLoo)' Then by virtue of (2.19), we have

1 [ A1l o H Jy H [ A1 | Lo <9
35 T Azllze — Now ! = T [[Agfp= =
Similarly, we deduce from (2.18) that

0%y 0A 0A dy Y
150z e <l (Td = A2) 7] (H gy e 155 el g )Ha I

(A.2) [ A2z < eK||Vi(

1
)| oo < 3Ke||[Vuo|e < o

def .
whenever ¢ < g, = mln(

(A.3)

A4
. <Ce 3T IVVele < 1,
la]<1
and
_ 0%A 0%A oy Y
|28, <Cljzd - 42 1>|Lw((uay;um+u e S I
0A 0A
(A5 (15 + 152 N ) 2

<Ce Y VOV~ <1,

o <2

provided that ¢ < g, def min (&q, C_I(ngz ||VC“V¢HLoo)_1).
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Then thanks to (A.3), one has
lg1llz2 < CKIG ez,
While for k,¢,m € {1,2}, we have

2
8G1(yh§;€7 Ys3), ; %C;: (21 3), 3/3)8%(;;,; Y3)
and
9 2 2 a0
0 G1(gg;€z;12,53 3) —; %il Yn(2n,Y3), ¥3) 82 Bz Z 8% yh (21, ¥3), y3)gg; 227
and
3G (yn(2n,3),y e Py
D2 2007 — 8% (yn(2n,93), y3)m

o en 0%y; 0y; 0%y, 0y;
2= Dy, (on(zn-9s).9 ><82g82k Do | 020 D20
oy 0y; ay]

dy; 0 Y;
Dz azmaz) Z;l aylay](?yz G RO v o o

from which, (A.3), (A.4) and (A.5), we infer
||Vh91HL§ < CKHVhGluLgo(Lﬁ),

and

K
IWarlzz <C [ (7363 n om0l | T e

+HVhG1(yh('7y3)ay3)HL}21HV}21?JhHL°°> dys
<CK (V4G ey + IVEGi 1)) -
Similarly, one has
HVi’;gllng <CK Z HVﬁVhGl”Lgo(Lﬁ)-
o <2
As a consequence, we achieve (A.1). O
def

Lemma A.2. Let y(w) and w(z) be determined respectively by (2.15) and (2.16), let ga(2) =
G2 (y(w(z))). Then for ¢ < eg, which depends only on ||V é||yy2,., one has

1 1
(A.6) 192 g3 < Cligzll 53 < CIVG2 72V Gall -
Proof. 1t follows from (2.14) and (2.20) that
1 oy
12—t <C [ 190 ) 0, ) 2 s+ 5

(A.7)
<Ce(llgslle + IVnosllL=) < 3
provided that € < g def min(gq, (2C) 7 ([|¢3 £ + ||Vh<;53||Loo)_1) for e, given by Lemma A.1.
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While by virtue of (2.16) and (2.21), we have

w3 (2)
z3 = ws(z) — 8/ P (yn(zn,y3),y3) dys,
0

where ®.(y) def 1+(¢):¢E§2y)' Then due to (2.21), for k,¢ € {1,2}, we have

Ows(2)

w3 () b
(1 — @ (yn(2n, w3(2)), ws(2))) 0 E/O Via®e (Yn(2n,y3), y3) - %(Zhvy:a)dy&

and

9%ws o0d, Oows Ows
1—ed, -
( € (?J(w(z)))) 021,02 gﬁyg y(w( ) 82k 826
Oy yn Owy ) Jwy
— eV (y(w(z))) <aZg (zn, w3(2)) + Dws (2n,ws3(z)) 8Zg> 02

ows 0*

o w3(z)
= TP (w()) - G s D Gt e [ Tuelan (o)) 5 (o )i

82k

2

w3(2) 0% ®, 0y, 0y;
+€”Z:1/0 D9:0y; (yn(z h’y3)’y3)ﬁz@( hay3)azk (2n,y3)dys.

Note that el|@s||r < I, for k, £ € {1,2}, we have

H 8211)3

dw 0y oy ow ow
azkaZZHLOOSCE(HV@ oo (155 e + Mgl ee + iz el o) 15 M e

KIT0l | D8+ KT | 222

so that by virtue of (A.3) and (A.4), we infer

82
(A8) 3550 Nl < Ce(IVBsllie + [ V20sl12=) <1,

provided that ¢ < eg def min ey, C1 (| V3| + [[V2@3][L)~1). Similar calculation shows that
(A.8) holds for all k,¢ € {1,2,3}.

On the other hand, for k,¢ € {1,2}, one has

dg2(z)  0Go ows(z)
D —T%(yh(zmwzs(z)),w:s(z)) B

2

+ 3 S o wal)wa() (5 + 92 ) (o (),

o1 0z k 8w3 8Zk
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82g2(2) _82G2 w(z awg awg 8G2 (w . 622113
Dm0z 02 92 Oz, | Oyz B20078

+ 2 et (y(wl) (G ) + 55 w5 )

=1 Oy3Jy; dws
N PGa o (Du | 0w 0w (Ou | Oy Dus
= 0y;0y; ( Ozy  Ows Oz 0z, Ows Oz

0G, %y Py; dws
+) = (y(w(2)), ws(2)) <8zk8Ze t Dws0 07

2. 2 92

0%y; Ows n 0%y; Ows Ows n 0y; 0%ws (w(2)),
Owsz0zp Oz, 8w3 Oz, 0zp  Ows dz0zp

from which, (A.3), (A.7) and (A.8), we deduce that

8w3

ow

ol 12

| Vagallze <C[IVGsl|2(1+ Hay o) (17557 Mo )l de t( e et (2

<C[VGa 12,

and

Y ow y ow
HthzHL2SCHV2G2HL2(H8 e + 152 10 + 5l L+ 152 15))

0w ow
+ 019Gl (14 2 1222+ (1222
<C(|VGalz2 + | V*Gall12).

Similar calculation shows that the above two estimates hold for the full derivatives of gs. Hence
by virtue of Lemma 3.1 and the interpolation inequality in Besov space, we deduce (A.6). This
finishes the proof of the lemma. O

52 )14, )

Let us now turn to the proof of Lemmas 4.2 and 4.3.

Proof of Lemma 4.2. By virtue of (A.1), for A} given by (4.15), we get, by using interpolation
inequality in Besov spaces, that for € < e,

(A.9) 145151 < CllAS Iz < Co (Y IVEVIGlLg 2y )-
la|<2
Similarly by applying the second equality of (A.1), we deduce that, || A}|| Bl for A} given by (4.16),
satisfies the same estimate as || A}|| B
Note that for by = e3 + ¢, we deduce from (2.18) and (A.6) that for ¢ < eg

1 1
(A.10) [0 = Id] 1,3 < Cel[VOl 72Vl -

Due to (4.15), (4.16) and the fact that 7 is supported on [—2, K + 2], we get, by a similar derivation
of (A.6), that

(A.11) [zl g1 + 1431l 51y < Cell VO a2
Let us take
def . — -1
& L min (20,25, O (V6] 2 + 1 Vndll i) -
Then (A.11) together with (A.9) and (A.10) leads to (4.18). O
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Proof of Lemma 4.3. Let us denote

d—ef&?n (23 / (yn(zn, w3 (2')), w3 (2))dzs  with 2" = (zp, 25).

Then one has

P _ et (en) /  0un (s w (s ), wan, 24)) d2h + en(a)oly(w(2))),
zZ3 -1

and
2
83223 =€n 23/ oy )))dzs + 2en (23)p(y(w(z)))
+en) a;i@@(z))) I (@) Gt + g () G (2)).

from which and (A.3), we infer

(A.12) 18522 < Ce(l1dllz2 + 0]l Lo (12))-
Similarly, for k£ = 1,2, one has

2 P 23 w
i) =) [ (2 W) - (G2 ) + 52 o w() G )

¢ nyOws / ¢ Ows
+ S (N o)+ enlan) (o () G2
0p oy Ows

S (w0 (G2 wl2) + G2 (w2 G2 (2)) ).
So that we obtain

IVOsD || 2 §C€(||¢HL2 ol g2y + (IVEllz2 + VOl Lo (12))

0 0
(A.13) (14 52l (4 152 ))
<Ce(léla + 10l ge (arz)) -

Then by virtue of Lemma 3.1 and the classical interpolation inequality in Besov spaces (see [2]),
we deduce from (A.12) and (A.13) that

1 1
103D go.13 < CllOsD 51 <Cll03D7=lIV D 72
<Ce(llollar + 6l Lee azy)-
On the other hand, it follows from a similar derivation of (A.8) that

(A.14)

I
0202,02¢ "L —
Then for € < e3 with g3 being determined by

(A.15) < Cel|[Vs|lweo.

-1

f . _ _ _
(A.16) e mln(€27C 1+ 1Veslwze) Y(llgllgs + 161l oo (13)) 1)7

we get, by a similar derivation of (A.14), that

IV 1.3 < Celldlus + 10l eea3))
which together with (A.14) and (A.16) ensures (4.20). O
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