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viscosity is zero. We prove the existence of a unique global solution to the system with initial data
in Lebesgue spaces.

AMS Subject Classifications : 35Q30 (35Q35 76D03 76D05 76D09)

Keywords : Navier-Stokes anisotropic; Existence global; Uniqueness.

1. INTRODUCTION

The classical Navier-Stokes equations describe the evolution of a homogeneous incompressible
viscous flow in the three-dimensional space. We recall here those equations:

Ou+ (u- V)u — v (02 + 8§)u — 1,0%u = —Vp
(NS) ¢ divu=0
U‘t:() = Uup.

Here, by v, (respectively v,) we denote the horizontal, respectively the vertical viscosity, the
velocity of the fluid  is a vector field which depends on the time ¢ and the space variable z € R3
and finally, Vp denotes the corresponding gradient of the pressure which can be interpreted as a
Lagrange multiplier associated to the incompressibility condition div u = 0.

In the case where the viscosity coefficients vy, and v, are strictly positive, it is well known by the
J. Leray work [14], that the system (NS) admits a global in time solution in the energy L?. After
these results, H. Fujita and T. Kato [10] have proved that (NS) is locally well posed for general

initial data in the homogeneous Sobolev spaces H?2 > , by using semi-group techniques. Moreover,
they proved the existence of a unique global in time solution, when the initial data is small enough
compared with the total viscosity of the system inf{vy, v, }. Many other results have been proved in
more general functional framework which are all invariant by the parabolic scaling of the equation
(see for example [4] and [12]).

In the case where v}, > 0 and v, = 0 the system (NSy,) has been studied for the first time by J.-Y.
Chemin, B. Desjardins, I. Gallagher and E. Grenier in [5]. More precisely, the authors have proved
in [5] the local in time existence of the solution when the initial data belongs to the anisotropic
Sobolev space H%2 1, with HO* = {ue L?| (fge u(z,y, )||Hs dxdy)2 < o0}. The global well-
posedness was proved for initial data which are small enough compared with horizontal viscosity
vp. However, the uniqueness of the solution was proved for more regular initial data, belonging

to the space H 0.3+ The uniqueness in the general case where the initial data verify ug € H 0,5+

was proved later by D. Iftimie [11]. The critical case s = 1 was studied by M. Paicu [15], who

proved that the system (NSy) is locally well posed in the anisotropic Besov space BY: = {u €
s152(f

ez )21 1<|z|<20
for small initial data compared with v,. Recently, J.-Y. Chemin and P. Zhang [6] have obtained

a similar result by working in an anisotropic Besov space with negative regularity indexes in the
1

|z||| Fu(-, -, z)||%2(R2)dz)% < 00}, the global existence of the solution was proved
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horizontal variable. This result allows to prove the global existence of the solution for horizontal
Navier-Stokes equations with highly oscillating initial data in the horizontal variables.

In this paper, we study the opposite situation, the case of a vanishing horizontal viscosity and
a strictly positive vertical viscosity, namely v;, = 0 and v, > 0. Our main goal in this paper is to
obtain the global existence of the solution for very rough initial data. In all of what follows, we
suppose for simplicity that the vertical viscosity is constant v, = 1, as we are not interested in the
dependence of any quantities in the vertical viscosity. In this case, the system becomes:

ou+ (u-V)u— 0?u = —Vp
(NSy) ¢ divu=0

u‘t:O = Ug.

We recall that the main idea in the case where v, > 0 and v, = 0, in order to control the vertical
derivative was to use the incompressibility condition, namely d,u! + d,u® + 9,u® = 0, which allows
to obtain a regularizing effect for the vertical component u® by using the horizontal viscosity.
Contrarily to this situation, our case is more difficult to study because of the lack of regularity in
two horizontal variables. By using a regularizing effect only in the vertical direction seems very
difficult to recover any regularization in all variables in the general case. This is the main reason for
which we restrict ourself to study a particular case, more precisely, we consider only axisymmetric
flows. Indeed, for axisymmetric solutions, we have divu = d,u" + UTT + 0,u* = 0. Before to go
further in the details, it is convenient to precise what exactly we mean by axisymmetric initial
data.

Definition 1.1. We said that the vector field u is axisymmetric ("without swirl”), if and only if,
we can write

u=u"(r,z)e, +u*(r,z)e,

where (er, e, ez) 1s the cylindrical base.
A scalar function is called axisymmetric if this function has no dependencies on the angular variable

6.

To prove that the solution associated with any initial data ug axisymmetric, is axisymmetric,
it just uses a method to X. Saint Raymond [17]. The classical Navier-Stokes system (in the case
v, = 1, > 0) has already been studied by many authors, the first results was obtained by M.
Ukhovskii and V. Youdovitch [19] and also by O. A. Ladyzhenskaya [13].

In this case, the vorticity of u is defined by w := V X u, and admits in a cylindrical frame only
one component in the direction of ey:

w=uwley with =08.u" —du*

and this vorticity verifies the following equation:
u'/‘
Opw + (U0 + u*d,)w — —w — 2w =0,
T

and consequently, w/r verifies the transport-diffusion equation:

6 6 0
B+ (u- V) — 22 =
T T T

Then, it is possible to prove by energy methods that, for all p € [1, 00| (respectively p €]1,2]) that
the LP norm of w/r (resp. r~10,w) (respectively the LZ(LP) norm) is controlled by the norm of the
initial data wg/r. Using the Biot-Savart law, we can prove that (see Proposition 3.1)
u” 1
|—| < — * [rto.wl.
,
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In this way, the incompressibility condition allows us to control d,u” by using that d,u” = —“% —
0d,u”. In the following we use the notion of Lorentz space which is defined in the next section. Our

main result is given bellow:

Theorem 1.1. Let wg be an axisymmetric function in L%’I(R?’) such that =% € L%’I(R?’). Let ug a
azisymmetric solenoidal vector-field with vorticity woeg which is given by the Biot-Savart law:

1 X —-Y)xwy(Y

Then, the system (NSy) has a global in time solution u such that the vorticity w satisfies

w e L?SC(RJH Lg’l(RB))a Ow € LZQOC(R+; L%J(R?’))
S e (R LURY), 0.5 € Li(Res LP(RY)).

Moreover, for all t > 0, we have
1. _
Ol g+ 1950l 3.0, < Cllwoll . exp (CE Il 3.)

and

< Cllr~ wol|

H?“ w(t)HL%,l + ”T aZwHLf(L%’l) S L%’l'

Furthermore, if Orwy € L2 and wo € L3, then
Orw € LS (Ry; L2(R?)), 0.0,w € LY, (Ry; L7 (RY))
and the solution is unique.

Remark 1.1. We recall that R. Danchin [8] has proved that the azisymmetric Euler system is
globally well posed for initial data with Youdovitch type regularity. More precisely, he proved that the
Euler system is globally well posed when the initial vorticity verifies wg € L>*NL> and wo/r € L3
Recently H. Abidi and al. [2] have proved that the axisymmetric Euler system is globally well posed in

341
critical spaces for the initial velocity, more precisely when uy € B;,l forp € [1,00] andwy /1 € L31,

Remark 1.2. We note also that H. Abidi obtained previously similar results in [1]. Indeed, in this
paper, the author proved that the classical azisymmetric Navier-Stokes system (i.e., v, = v, > 0)
is globally well posed when the initial velocity verifies ug € W2P(R3) for 1 < p < 2.

Concerning the existence of the solution we can prove a better result, for even less regular initial
data. However, the uniqueness of the solution seems to be more difficult to prove for this weak
regularity. Our second result is the following.

In all of what follows, we always make the convention that: for any a > 0, a4 means any
constant greater than .

Theorem 1.2. Let wy be an azisymmetric function in Lsn Lg+’1(R3) such that =% € Lsn

LgJ“l(]R?’). Let ug a azisymmetric solenoidal vector-field with vorticity woeg given by Biot-Savart
law. Then, the system (NSy) has a global in time solution u such that the vorticity w satisfies

loc loc

(w, %) € Lo (Ry; Li N LT (RY), (0=, 8#) € L}, (Ry; L3 NLEH1(RY)).
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2. NOTATIONS AND PRELIMINARIES

We say that A < B if there exists a positive constant C' such that A < C'B. By C' we denote a
general constant which can change to any line. Let X a Banach space and p € [1, 0], we denote by
LP(0,T; X) the set of all functions f measurables on (0,7 valued in X, such that ¢t — || f(¢)||x
belongs to LP(0,T"). We denote by C([0,T); X) the space of continuous functions from [0, 7) valued
in X, Cp([0,7); X) “ ([0,T); X)NL*>®(0,T; X). Finally we denote by p’ the conjugate exponent
of p defined by 1%4— 1% =1.

Before to introduce the definition of the Lorentz space, we begin by recalling the rearrangement
of a function. For a measurable function f we define its non-increasing rearrangement by f* :
R+ — R+ by

O = inf{s > 0; |{2/ |f(2)] > s}| < )\}.

Definition 2.1. (Lorentz spaces) Let f a mesurable function and 1 < p,q < oo. Then f belongs to
the Lorentz space LP? if
1
L 1
i L@ FONE)" <o0 sig<oc
Lra = 1
suptr f*(t) < oo i g = oo.
>0
Alternatively, we can define the Lorentz spaces by the real interpolation, as the interpolation
between the Lebesgue space :
LP = (L7 LPY) .

With1§p0<p<p1§oo,0<0<lsatisfyingézlp;f+]%andlgqgoo,alsofELpﬂifthe

following quantity

HfHLP,q = (/OOO (t_eK(t7f))qC?);

K(f) = it {follm +tlfilon | fo€ I, fi e 7).
f=fotf1

The Lorentz spaces verify the following properties (see [16] for more details) :

is finite with

Proposition 2.1. Let f € LP*%, g€ LP>% and 1 < p,q,pj,q; < oo, for 1 < j < 2.

o [fl<p<ooandl <q< oo, then

1fgllzra S fllzrallgllzoe-

oIf%:i—i—% (mdl:q%—{—q%, then

I fgllzra S N fllLera gl Lrzae.
o [fl<p<ooandl <q< oo, then
1f = gllzea S fllzeallglizr-
1 _ 1 1 11 1

[ ] If]. <p,p17p2<00, §+1_1771+ZT2 anda—a+q;7 th@n

1 gllea S N fllzeva|lgllLee e,

for p = oo, andq%—i—q% =1, then

1 * gllzee S 1fllLerar[[gll Lpaiae.

e forl<p<ooandl < q < g < oo, we have

Lp’(H (SN LP:Q2 and prp — Lp.
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Let us recall also the interpolation inequality (see [7]) which allows us to obtain some embeddings
of spaces.

Lemma 2.1. Let pg, p1, p, ¢ in [1,400] and 0 < 6 < 1.
o Ifqg<p, then

[LP(LP), LP(LP)] — LP([LP, LP"](g.q))-

(0,9)
o Ifp <gq, then

Lp([Lpo,Lm](aq)) N [LP(LPO)’LP(LIH)] 6.0)°

Recall also the definition of Lebesgue anisotropic spaces. It notes LY(L{) the space L5 (R; L4(R?))
defined by the norm

HfHLﬂ(L‘ZL) = (/R (/R2 !f(w,y,z)\qdwdy)g dz)%.

Similarly, we denote by Lf (L) the space LI(R?; LP(R)), with the norm

HfHLZ(Lg) = (42 (/]R ]f(:r,y,z)\pdz)% d.ﬁl:‘dy)%

In the cylindrical frame, w = V X u admits only the component in the direction ey and in the
cartesian frame two components:

w = (w',w?0)
with w! = 8yu3 — 0,u? and w? = Q,u' — 9,u?, w? for 1 < j < 3 the components of u in the
cartesian frame and (z,y, z) are the variables in this base. The fact that u? = 0, implies that in

the cylindrical frame, we have:
u-V =149, +u*0,,
and divu = 0,u” + v + 0,u”.
r

We recall that, if u is a solution of (N.S,), then w verifies the following equation
Ow + (U0 +u*0,)w — u%w - ng =0,

and using that v/ = 0, we obtain

(2.1) Ow + (u- V)w — u%w —Pw=0.

In other words, in the axisymmetric case, (NS,) became a two dimensional problem. We recall
also that in the two dimensional case, w = J,u’ — 8yu1, verifies the following transport-diffusion
equation :

Orw + (u- V)w — 02w = 0.

In the three dimensional space, in the axisymmetric case & plays a similar role because we have
w w w
2.2 Oh—+ (u-V)= —92= =0.
(2.2) b+ (u- V) =0

3. PROOF OF THE THEOREM 1.1

3.1. A prior estimates. Using the equation (2.2) and the Biot-Savart law, we can control some
important quantities in order to prove the global existence of the solution. More exactly, we have
the following estimates.

Proposition 3.1. Let u a azisymmetric solenoidal vector-field with vorticity w = wPeq. Let (p,q, \) €
[1,00]3, then we have
u=w’ =0 onthe azis r=0.

The following inequalities :
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3 1_1_1
o If5 §p<oosuchthata—§+5, then

u” w
lullLor S llwll L, ||7|!Lm S II;HLqm 100" [ Lo S 1020l L,

w
10l por S 102wl e and (10207 Lo + [10ru™| por S 10rwll o + [l Lo

o [f3<p< o0 suchthat%:%+%, then
u” w
[u" Lo S N0:0] Lan, 1=~ lzes S 1102l o

w w
lullzon S NOrwlzon + 11— lpars 10zl Lon S 10:0rwll Lo + 1102l Lo

and w
10ru | zox S 11020, Lo + 1102l Lo

e [In the limiting case, that is p = 00

u” w
hlzw S Iwllzsss Il S 00llgn 1l S 102150
[l oe SN0l g0+ 1=l 30s 1020 noe S 10:00]) 31 + 0ol 3.1
L2 r L2 L2 r L2

and w
0 e % 10:000l .0 + 1021, 3.0
Proof. The first assertion can be deduced from the fact that that u® = 0 : indeed, using that
W =u-ep
we have
(3.3) —yu' 4 2u? = 0.

Consequently u' = 0 (resp. u? = 0) on the plan = 0 (resp. y = 0). For w?, we use the fact that
w has only the component in the direction ey, which implies

zw! + yw? =0,
and consequently w! (resp. w?) is vanishing on the plan x = 0 (resp. y = 0). This proves the

result. Using the Biot-Savart, we have

1 X -X
4 X)=— _ X"ax'
(3.4) W) = - || e * @

with X = (z,y,2) and X' = (2/,¢/, 2'), and finally we have

ul S 7z * |l

-2

on the other hand, by the definition of the Lorentz space (Definition 2.1), we have

1 3
—— € L2>(R?
xp <P
so, by using the Proposition 2.1, we deduce
ullpr S [lwll 22 for § <p<oo and [ulle S llwl a1

L3+
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By the inequality (3.4), we have

1 z—2
1 _ 2 / /
u () = e /R3 X_XP /|3w (X")dX

and
u? = 1/ iwl(X')dX'
4 R3 ’X _X/|3
with w!(X’) = —sin @ w?(X’) and w?(X') = cos @' w?(X’). Consequently we have
u"(X) = cos B ul (X) + sin @ u?(X)

1 _
= / ﬁ{ cosf cos ¢ — sinfsin ¢’ }w? (X')dX’
™ JR3

where we have denoted by (7,6, z) the variables in the cylindrical frame, and we recall also that in
this cylindrical frame we have X = (rcosf,rsinf,z) and X’ = (r' cos @', sin¢’, 2’). We have

. 1 z—2 / /
u'(X) = —M/st{cosesmﬁ + sin 6 cos 6 }w Ndx

= 4 / / / |X X’|3 COS(9 — 9’)000(70/7 z/)T/dT‘/dH/dz/,
& R

on the other hand

z— 2 _ 3 1
X —xP X -x|

by integration by parts, we found

cos(0 — ea/w v 2 dr'do'dz .
0= [ ] [ mon

Using the fact that u” does not depend in the variable 6 (X=(r,0,z)), then

3
1 2 1
(35) Ur(t7 T, Z) = E /R / j A m COS Q/az/we(t, T/, Z/)T/d?”/deldzl,
+v 72

which implies that
1
|u” IN‘ ,*IafWI
By the definition of Lorentz spaces, we have

— € Lo™(R3), for 0< o <3
and so, by using the Proposition 2.1, we obtain the desired inequality.
Concerning the second inequality of the proposition, and thanks to the inequality (3.5), we have

|0;u * [0y wl,

T|N 2
-
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and consequently, by using the Proposition 2.1, we obtain the desired inequality. For “TT, we use

the identity (3.5)) and we follow the same computations as in [18], in order to obtain

3T
1 = ', 00 o
(b1 7) = / / p / cos 0’0 (t,r', 2") i de'
Am Jry Jz SR (P2 4072 — 201 cos O + (2 — 2)2)2
/ / / cos 0'0,u0 (t, 1", 2') ' de'de
R+ (r2 + 12 = 2rr' cos 0 + (z — 2/)?)2

3
1/ / 2 / cost0. (1) r'dr'do’dz’
TRy JZ  JR (r2+ 712 —2rr'cos 0 + (z — 2/)?)2

for the second part, with the following change of variables 8 — 6’ + 7, in order to obtain

00" (t, 1, 2
"(t,r, 2) / / / o8 WH(t.r', ) —r'dr'dd’ d2’
T ar Ry J-2 JR (r2 + 12 = 2r1' cos 0’ + (z — 2')?)2

/ / / cos 00,00 (t,r', %) i dr'd'dz.
Ry J—2 JR (r2 + 172 4 277’ cos 0 + (2 — 2/)2)2

If | X — X'| <r, we use the inequality (3.5) and the fact that v’ < 2r, to obtain

cos 0’00 (t, ', 2 , ., (
= r'dr'df' d2’ / 0. ax’.
‘ /X X' <r RS | X — X'\ ‘ }

X = X'|
If | X — X'| > r, we use the inequality (3.6) and the fact that

[

(3.6)

N|=
N[

‘ (r2 + 1% 4 2r cos 0’ + (2 — z')2)7 - (1"2 + 1% =21 cos 0 + (2 — z')2)7

2r
< v v/190
X = X]?
because —F < ¢ < 7. Consequently, in this region, we found
cos 000 (t, ', 2) , ., 1
22 drde'd | < r/ e |Ow(t, X)|dX’
‘/X X'|>r ‘X _X/| | X—-X'|>r |X —X/|2 :

<o f F o
Ix—x/|>r | X — X

and as, by using the fact that v’ =" —r +r and |7’ —r| < |X — X'|, we obtain

cos 000 (t, "2 , ., / w(t, X)
—2r'dr'df'd2 | Sr 0.1
‘/X X/|>r X — X/ g3 | X —X/||

So

" (8, X)] S / e X,’|a < Dlax,

and we have also

1 w(t, X")
r < 9 /
X 57 [l S lix
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To conclude is enough now to use the convolution laws. Concerning u*, by using the Biot-Savart
law, we have

1 (z — ) (X) = (y =)' (X)) o
. *(X) = — dx’.
(37) X = /Rs X — X'PP
On the other hand
r—a 1 y—y 1
xoxp - xox M T —xp T Mx o

an so, by integration by parts, we obtain

1 Oyt — Opw?
z S Ty T T gyt
uw(X) = 47 /R3 X — X/| dx".

In the cylindrical variables, we have

1 1
Oy = cos0' 0,y — —sin@' 0y, 0, =sinh' 0, + — cost Oy,
r! Y !

w'=—sinfw? and w?=cosfu?,
and consequently
1 1
Oy/wl — Opw? = —sin? 09w’ — - cos? 0'w? — (0052 0'9,0% + - sin? H'wg)
r r
0
= _ar/wg - wf,a
r
and so
1 1 w?
3.8 (X)=—— — (8’ + = )dX'.
(38) ) = - | (0 + %)
So
1 w
(3.9) DABS * (10rw| + |p|)a

and in the same manner, for the derivative in the variable z, we use the same computations and
thanks to the inequalities (3.7)) and (3.8), we found

# * ’az/w|
(3.10) 0] < 4y (1Bl +1%))
ﬁ * (|8Z/8r/w| + |8Z/%|)

Using the convolution laws, we deduce the desired inequalities. Concerning 9,u®, we use the
inequality (3.8), to obtain

1 ot / 0
d,u*(X) / P oSt g - = )dx’,

then

Z| < 1 w
(3.11) 0ru| < 1 * (0] 4 151)
because

r—1r'cost
L LIPS
X — X
Finally, for d,u", is enough to use the fact that

T

divu = 0,u” + v + 0,u® = 0.
r
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This proves the proposition. O

Conforming to the Proposition 3.1, we need to control w in the Lorentz space L%’l, which is
the goal of the following inequality. More precisely we give an estimate on the solution of the
transport-diffusion equation.

Proposition 3.2. Let 1 <p < 2,1 < g <p, wyg € LP? and u a regular axisymmetric vector field
such that %T € L}(L>®) and divu = 0. Let w € L{(LPY) and O,w € L?(LP9) a solution for the
following system

Ow + (u- Vw — 0?w = “%w

(TDpa) {

W‘t:() = Wy-
Then

t T
lw(@)llza + 10:wll 210y S llwollzraelo 15l

Proof. The first step is to control w in the Lebesgue spaces. Let 1 < p < oo, we multiply the
equation verified by w by |w|P~!signw. After an integration by parts combined with the fact that

div u = 0, we obtain
2 u”
= —|wPdzx,
L2 R3 T

and by using the Holder inequality and the integration in the time variable, we obtain

(p—l)‘
p

1d 4(p—1 P
oty + 222 ol

4 P
lw®7s + 9z |w|?

2 » t u” »
ocany < ool 9 [ IOl o)

Finally, the Gronwall lemma implies that

R A

2
wl?

t u”
< 4 ( — cod )
sy < Tl exp (o [ 15 ldr

In order to estimate J,w in LP we will use the following Lemma. We postponed the proof of this
lemma for the moment.

z

Lemma 3.1. Let 1 <p <2 et f € LP(RN) such that d;|u|? € L2(RN). Then

2—p
LI

For p < 2, using the Lemma 3.1 and the inequality (3.12), we obtain that

t
fowllzan s [

= HWHL?(Lp)

10:fle S ||l 1%

O:Juwl?

2 9 p 1
lwlzrar)

Ozl

L} (L?)
t u”
< — odT ).
S lealloexo ([ 1% lumar)
So
t u”
(313) (Ol + 1000300y S el xp ([ 1% (7)),

We denote by T and S the following linear operators:
T : LP — [P S: LP — L(LP)
Wy — w wp — O,w,
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with w solution of the system (TDy,q). By definition, we have 7 and S are linear operators, then
by Lemma 2.1, we obtain

t u”
(3.14) o (t) [ + 110:0(7) | 2zma) S lwiollma exo /0 1% ()l edr).

This proves the proposition. O
Using the same computations, we obtain the following corollary.

Corollary 3.1. Let 1 < p < 2,1 < q < p, r"lwy € LPY and u a regular axisymmetric vector
field such that divu = 0. Let r—'w € L{°(LP?) and r~10,w € L?(LP?) a solution for the following
system

{@f+w-wf—£¢:o
w — wo
r ‘t:o - r

Then
[

Remark 3.1. Using the inequality (3.12) and the fact that

w
@{
.

Sh

Lpa ‘ L2(LPa Lpa
12Oz <1522
we deduce thanks to [3], that ¥(p, q) €]1, co[x][1, o0]

|w(®)[ e < [Jwol|oaels I Dllzecdr

and

w wo
—(@)[|zra < [[—||Lra.
”T()Hqu_HT”LPQ

Using the Proposition 3.1, the Corollary 3.1 and the Holder’s inequality, we have

u” w 1 w
[l PR L FETT] s e
(3.15) T 1L (L) rIILI(L27) rlIL2(L2")
’ < ][«
2| — .
~ rllLge

Consequently, for all p €]1,2[ and ¢ € [1, p], the inequalities (3.14) and (3.15), imply

CtE|L) 4
(3.16) lw(®)llzra + 10:wllL2(Lpay < Cllwollprae 7 220
So, the Proposition 3.1, Remark 3.1 and the inequality (3.15), implies that (p, q) € (%, o0) X [1, 00],
1w
Ctz HTOIIL%J.

[u®)|[ra < CHWOHL%,qe

So, ifw € L%’l, then, the previous inequalities imply u € L3!, which is embedded in the dual space
3

of L2'!. Consequently, thanks to the Proposition IL.1 in [9] and by using the equation verified by w

(2.1), we deduce the following result of the existence of the solution.

- 0 b
Corollary 3.2. Let wf € L%’l(R?’) an azisymmetric function, such that ¢ € L%’l(R3). Let ug the
axisymmetric vector field such that divug = 0 and with the vorticity wy = wg(r, z)eg, which is given
by the Biot-Savart law :

1 X-v
X)= — [ 22 L (V)ay.
uo(X) 4wAﬂX—YPX%()
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Then, the system (NSy) admits a global in time solution u such that the vorticity w satisfies

we €(Ry; LTY(RY)), O.w € L} (Ry; L2 (RY))
S et (R LY®Y), 0.5 € L (R L3 (®Y)).

Moreover, for all t > 0, we have

L1
Ct2||r~two| 3 1
L2

(O g0+ 1000y .0, < Clloll .1

)

and

—1 -1 —1
P (E) .+ ™00l 0, < Cllr el

Proof of Lemma 3.1.
Let us remark that

p2
10:fllze = 10:] f1l| e et [fl=1r1%7,
and so, we have
p P 2—p
ailfl =50 f12)If1=
The Holder’s inequality, implies that
Ovullzr S [orful?]| | lull
This proves the Lemma. ([

3.2. Uniqueness. In order to prove the uniqueness of the solution for the system (NS, ), it will be
enough to prove the uniqueness for the equation (2.1). Let w; and we two solutions, and let define
dw = wy — wi their differences, which verifies the following system :

Opbw + (uz - V)ow — 826w = —(6u - V)w; + uééw + a%rwl
(50&.)‘15:0 =0.

The functional framework where we control the differences of the two solutions is LP with g <p< %
Let us admit for the moment the following Lemma the proof of which is postponed.

Lemma 3.2. Let w; with 1 < i <2 two solutions of the equation (2.1) with the same initial data.
Let us suppose that for i = 1,2 we have

3
2

wi € LP(L3Y), O € L2(L2Y) O € L(L?)  and  0.0,w; € LA(L?)
Then
dw € L{°(LP) and d.|0w|? € L3(L?).
The energy estimates imply that

4

-1 p wiou”
(pp2 )Haz|w|g 1

uh 1
, S =2l llowllE, + o [l0wl|Zs

2
L

1d
=2 5wlP
Sl + -

+ (6w - V)wr | Lo || 0w,
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Using Holder inequality, Sobolev embedding, Proposition 3.1 and Lemma 3.1, we have

s 11 3) 16w

w15u w1
[ze + [[(6u - V)wr|lzr < (II*H

ol g 100
(” h (Lvip)

3p

3—2p

(H Il g + 0wl 3) 18:0wl 10 + [[0:0renl] gllovll e 2, 3%

(=
Concerning ||0u®|| e» 3 and using the fact that
Ly P (Ly™)
z 2¢, 2 2¢,.2 2¢,.2 ow
Adu® = 9 0u” + 9 ou” + 9;0u” = Ordw + —

_6p_ 3p
TPy

+ [|0rwn | d)Hf)z\&vli||L2H5WIIL7+HazaruulngHfWII I
Lh

we obtain by integration by parts that
1
0w’ S e 0wl

Then, using the convolution laws, we obtain
||5UZ H 6p 3p
Ly P (L)

v

Sllowll e o
Lh P P(Lg)

S 1wl e

The Young inequality, implies that
L6l < (12w + 1215 + 10l + 108l 3 ) 6

So, we obtain the uniqueness of the solution if d,w; € L§°(L§) and 0,0,w; € L?(L %) because the
3

inequality (3.15) and the Corollary 3.1, imply (||%2 |z + ||]|?,) € L}
The first step is to prove that 0,w; € Lg® (L2) More precisely we prove that we can propagate

the regularity of d,w in the Lorentz space L3 and moreover, we prove that we have a regularizing

effect in this space.
4. PROPAGATION OF THE REGULARITY O,w
Let ,w € L*(L2),

Proposition 4.1. Let wy € L3201 N L3 such that wo/r € L2" and Orwq € L.

0,0,w € L%(L%) a solution of the following system
{8t8rw + (u- V)Opw — 0?0,w = —£$ + Opu" % + Y w — O Oypw — Opufduw
8rw|t:0 = 87«(,00.
Then
10w (®)ll 3 +110:0m0l] 5 50 < CEwo)-
w, then we deduce the

—% _ 9.u* and O,uF = Ou" —

Proof. First note that the fact that 0,u
w
+ 0,14 0rw — Oyu" Oyw + wow

following equation
2 u” w ;
040w + (u - V)Ohw — 020w = 2— (Opw — —) — O,u
r T
T
) W) + 0. u 0w — azuz$ +g

=2— (0w — —
r r

with
(4.17) g = —0,u"0,w + wdw.
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Multiplying the equation verified by 9,w by \8rw|% and integrating in space, we obtain

20,0 Hazlarw\‘*HLz < 2II*HLmII&WH2 /3 w92

5
3 dt L%

+ (2||7HL00||;HLg + 1907 + llgll 3)||3rw||2§

21,3
Integrating by parts and using the Cauchy-Schwartz inequality, we have
2 3 2 3 3 2 3 2
o u*|0w|2 = =2 | u®|0,w|20,|0rw|t < 2|ju |\Loo||6z|8rw|4||L2||8rw||L%.
And finally

d 3 312 u” Z)|2 3
Zl0wl2y + 10000013122 S (1=l + Il ||Loo)uarw|| ;
(4.18)
+ (105 + 1 1205 + gl 3 ) N0l

By Hélder, (3.10) inequalities and interpolation, we have

1 w L
3 (10:0:%4 +110:211%,)
2 L2 T L2

10-u *H |

S H;H;;Ha *H 3H8sz3 + H*H%Ha ~17gllo:wli 2y

1
Hé’zuZHLio(La H*H%H&z 3 [10:w]

e H*HLh e

N~ ol

w
r
w

NSRRI

1
3 10:0,w|? 5,
L3

and consequently by Lemma 3.1 and Hoélder inequality, we obtain

100211y N0l y S 1215 41021, g 10:00 7y ool
r L2 L2 r L2 L2
w1
N3 10213  10:001 4 10216l 1 ol 0o
1 2 1
< clfonl I3 + CIZN7 0.2 suazwn;%narwn ;)
w 2 T
+ C 2N 10217 10017 19y .
T L2 L2

Thus in view of (4.18) and the preceding inequality, we conclude

d 3 3 u” 3
g0l + 10:10rw] 7|72 S (H?HLOO + Huz\l%oo)H@erz (H*HL«JH*H + llgll 3)H<9TWH2

Mwo‘\'

w2
= R CA N R T
T L2
u” . 2 4 4 3
S (P e+ B + 1217 10217 0ol Y Orsel

u” w w, 2 w, 4 4 1
_ _ ) |5 5 2
(1 205+ 120710217 192017 + gl 3 ) 1ol

Then Gronwall lemma, implies that

2 4 4
C L1 oo+ 2o HI L5 5 10- 215 5 025 5 ) dr
1ora (@)l 5 + l10- larw\4|!L2(L2 < Ce % R B

t u”
x (||aTwouLg+/0 (el + 1207 10207 0l + gl ) ),
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finally the Lemma 3.1 and the above inequality assures that

2 4 4
C fg (I | oo 1w (12 00 +HI 2115 5 110: 217 5 10:0]|® 5 ) dr
|0ro(t)l, 3 + 100l 5, < Ce o UPE ot IS 191y el )
(4.19) i
+ gl 3)dr).

4

5
3

L2

3 4
w 4
< (Wl + [ U120, + 150510207 oo
Recalling that

1.
lw()l, 5.1 + [10:0]] < Cllwoll 3.1 exp (Ct2|rwoll 3.),

3
L¥(L2)

w
Sl

THL%J

||*||L1(Loo)m\/|! [FERe H [FERE o B ||L2(L2

and

“o
VAR g,

lo@)ll 5 + 1020011 5 3y S llwoll e

L)~
So, thanks to Holder inequality and Propos1t10n 3.1, we have

t t t
| ool g < [ ool 5 [ 0wl
0 0 0

and consequently, the inequalities (3.13) and (3.15), imply

¢ r 2 Ct H ” 31
(4.20) i 10:u" 0] 5 < llwollz2e

the Proposition 2.1, implies that

t t 1 3
[ 1ol s [ ettt

1 1 3
S 13 [0 2o ) 10:10 1 32),

Concerning ||azw HLl

(L2

and so, the inequalities (3.12) and (3.15) as well as the Remark 3.1, imply that

1
Ct2|lwo/r|| 3,
L2t

L2

(4.21) /I(?zw gst%Hon%ﬂ

Concerning the ||u"||i2 the Proposition 3.1 and the Remark 3.1 imply
t

(L)

! ! crd|s|
(4.2) J e [ llan  toolane™ e,
0 0
Then we deduce from inequalities (4.19), (4.20), (4.21) and(4.22) that

10wl 5 + 110-0,]] < O(t, wo).-

12(L3)

This completes the proof. O

Proof of Lemma 3.2. i
In order to prove that dw € L{°(LP) and 9,|w|2 € L7(L?) it is enough to prove that (us - V)dw +
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(ou-V)wy — 5w w1 € L}(LP) for p < 3. Using Hélder inequality and interpolation 3.1 (see
[20]), we obtain
2
I(uz - V)owlLe < fluz]  ap ;(llarwz‘HLg + (19:will 5)
1=
3-2p 3(p=1) 2
<l g Nzl S (0l + 00l 5)
i=1
3-2p 3(p—1) 2
S llwzll & llwzll s ;(H@rwz‘HLg + 10zwill, 5)
1=
3—2p 3(p—1)
Slwall 5 (10rw2ll g, + |2 2N, g + 102l 50) 7
L2 r
2
S (0wl + 19l )
i=1

and consequently, the above two propositions combined with the Corollary 3.2, imply (ugz - V)dw €

L{(LP), and so the same computations give (du - V)w; € L} (LP). For %&u and thanks to Holder
inequality, and by interpolation and by Proposition 3.1, we obtain

ug 3—-2p 3(p—1)
1= 70wl < 3 <Z I1=- || gllull s Null g
2 3-2p s(p 1)
SZH ol pillezll 3 110zw2]l o7,

And consequently, the Corollary 3.2 and the fact that ( D <9 imply g&u € L} (LP) the same
computation gives 2 - 5y € L} (LP). This proves the Lemma. O

4.1. Existence for less regular initial data. In this part we prove the Theorem 1.2 on the
existence of solutions for less regular initial data. In order to obtain this, we have to take into

account more anisotropic estimates on “% We have, for all 1 < p < %, the following inequalities

u” w
[—II = < Cl0:—|rrr.
r r

Lio(Ly ™)
Indeed, by the estimates of the Proposition 3.1 we have

1 w

So

u” w
I llege 5 HWHL% *110: ey
p

. c . _p . 2—p' .
Using the fact that the primitive of 7(r? 4+ 22)~2 is V72 + 22 P up to a constant, we obtain

—_

T
[EFPeES

w
e * Haz;HLQ-

LSAIN]

We take now the norm Lﬁ in the vertical variable in order to obtain

w
pp < Cl0:—llpwa.

[
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We can in this manner control the norm of w in all LP, we recall that w verifies the following
inequality
u’l"
Ow +uVw — —w — 82w =0
T
So for 1 < p < 3/2, we have

3 I OP P+ 10l 2 < [ 152l

B 1
h v L2(L3(p*))

< IIfII

As H*(R,) C L33 (R,) for s = (3 — 2p)/(2p), then

L e | e i A (T
L2(LJP
So
7’ 2p
1
@ it t)[P272 + 10: (P2 172 < H*II“’ o NP2+ S 10:(w )72
2dt 2 oS} 3—2p 2
Ly (L )
1
< C|9, *l|}f’§> Sl 22 + S 1= ().
3(p—1)
By Gronwall lemma and taking in account that [0, %l 2, <t |2 Lp.1, we obtain
PRt
lwllze + 10wl 2(zey < llwoll e exp(Ct 77 H e,
and by interpolation
lwllgea + 102wl 2(poay < llwoll Lo exp(Ct T H =lz1)-

In particular, the above inequality is valid for p = 6/5, and so we can prove the global existence
of a solution in the case where % ze L5H1 and wo € L5, First of all, we note that wy € Lel
which implies that ug € L? and by energy estimates, we have

t
()2 +2 /0 10ul2 < [luol.

On the other hand, as w € L (L5T1) and |[w| r» & | Vul|z» for 1 < p < +o0, then u € L (TWh57T)
and so, finally u € LOO(WL%JF(]R?’)) which is a subspace of L{°(L?(R?)) with a compact embedding
in the topology of L OC(R?’) to a fixed t. Consequently, we can construct the solution by using only

that w € Ls NLsH! and ol S LENLE+H! and by passing to the limit in a sequences of approximate
axisymmetrical and regular solutions of the equation

Opu + div (u ® u) — 8%u = —Vp.

More precisely , let ug € L?(R3) such that wg € LiN L+t and 0 e L3N LEHL Let J, the
operator which localizes in low frequencies defined by J,u = F~1(x(£27™)Fu(¢)), where F denotes
the Fourier transform and x is a radial and regular function, equal to which to 1 on a ball around
zero. We already know that for an axisymmetrical vector field ug, without swirl, we have that
Jnup is also axisymmetrical without swirl and also is regular (see for example [2]). So, it exists a
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unique regular and global in time solution, which is axisymmetrical without swirl u", solution of
the problem

Opun + div (up, @ up) — ' Apuy, — 3u, = —Vp,
(NSw) { divau, =0

un’t:(] = Jyuo.

Taking into account the fact that J,wy and 240 are uniformly bounded in LS NLEH! (see [8]) we

obtain that u, is a sequence which is uniformly bounded in L?O(Wl’gJ“(R?’)). Using the equation
verified by u,, we obtain easily that dyu, is bounded in L{°(H ") for N large enough. Taking

into account that the embedding of Wl’g+(R3) in L2 (R®) is compact and as u, is bounded in

Cioe(H™N) we obtain by Arzela-Ascoli lemma, up to a subsequence denoted again by u,, that u,
converges strongly to u in Cjo.(H, l*N ). Interpolating with the fact that u, is bounded in L“(Wl’gﬂ

C
we found that uy — u in L{ (L?(R*)). This allows to pass to the limit in the non-linear terms

and we conclude that v, ® u, — v ® u in D’. Finally, by passing to the limit in the system (N.S,,)
we obtain a global in time, axisymmetric solution, without swirl, u of the system (IN.S,).
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