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ABSTRACT. Consideration in this paper is the global well-posedness for the 3D axisymmetric MHD
equations with only vertical dissipation and vertical magnetic diffusion. The existence of unique
low regularity global solutions of the system with initial data in Lorentz spaces is established by
using higher-order energy estimates and real interpolation method.
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1. INTRODUCTION

We consider herein the 3-D incompressible anisotropic MHD equations

o+ u-Vu— (vpAp + 1,00 u+VII=B-VB in RT xR,
OB +u-VB — (upyAp + p,02)B = B - Vu,

divu = divB = 0,

(u,b)|t=0 = (uo, Bo),

where the unknowns u, B and II represent the velocity of the fluid, the magnetic field and the
scalar pressure function, respectively. The nonnegative constants v, (or v4) and pu, (or up) are the
vertical (or horizontal) kinematic viscosity coefficient and magnetic diffusive coefficient. In (1.1),
the usual Laplacians in the classical MHD equations are substituted by the anisotropic Laplacians
v +v,0% and pp A, + 202,

The classical 3-D incompressible MHD equations

du+u-Vu—vAu+VII=B-VB in R xR3,
OB +u-VB—uAB = B-Vu,

divu =divB =0,

(u, b)[=0 = (uo, Bo),

described the motion of electrically conducting fluids (e.g., astrophysics, geophysics, plasma physics
and cosmology, see [7, 12, 26, 16]). The existence, uniqueness and regularity of system (1.2) has
been extensively studied by many mathematicians recently. For the case that v > 0 and p > 0, it is
well-known that Duvaut and Lions [13] proved the local existence and uniqueness of solutions to the
d-D MHD system in the Sobolev space H*(R%),s > d. They also obtained the global existence of
solutions under the condition for small initial data. Later on, the global well-posedness of the 2-D
MHD system with large initial data has been established by Sermange and Teman [27]. However, in
the case in which v and p are all zero (i.e., the ideal MHD equations), the global well-posedness for
the ideal MHD system remains a challenging open problem. Consequently, on the one hand, focuses
have been on the equilibrium state for the MHD system (1.1) with partial dissipation [4, 33]. On
the other hand, there are some mathematical papers [17, 31, 34] devoting to the global existence
of the MHD system some partial regularity results and Serrin-type regularity criteria.
1
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Note that when the initial magnetic field By is identically zero, the system (1.1) reduces to the
following 3-D incompressible anisotropic Navier-Stokes system

o+ u-Vu— (pAp +1,02)u+ VI =0 in RT xR3,
(1.3) divu =0,

uli—o0 = uo,

which has been extensively studied by many mathematicians recently (see [8],[18],[24],[9], [15] etc.).
In particular, for the case where v, > 0 and v, = 0 the system (1.3) has been studied for the first
time by J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier in [8]. More precisely, the authors
have proved in [8] the local in time existence of the solution when the initial data belongs to the

anisotropic Sobolev space H 0.5+, The global well-posedness was proved for initial data which are
small enough compared with horizontal viscosity vy, and moreover, the uniqueness of the solution
was proved for more regular initial data, belonging to the space H 0’%+, which was removed later
by D. Iftimie [18]. The critical case s = 1 was studied by M. Paicu [24], who proved that the

system (1.3) is locally well posed in the anisotropic Besov space BO’%, and the global existence
of the solution was proved for small initial data compared with v,. Furthermore, J.-Y. Chemin
and P. Zhang [9] obtained a similar result by working in an anisotropic Besov space with negative
regularity indexes in the horizontal variable, which allows them to prove the global existence of the
solution for horizontal Navier-Stokes equations with highly oscillating initial data in the horizontal
variables. We recall that the main idea in the case where v, > 0 and v, = 0, in order to control
the vertical derivative was to use the incompressibility condition, namely d,u' + 8yu2 +0,u® =0,
which allows one to obtain a regularizing effect for the vertical component u? by using the horizontal
viscosity.

Contrarily to the above situation, the case v > 0 and v, = 0 is more difficult to study because
of the lack of regularity in two horizontal variables. In fact, utilizing a regularizing effect only in
the vertical direction seems very difficult to recover any regularization in all variables in the general
case. For this reason, many mathematicians turn to studying the well-posedness of some particular
cases, axisymmetric flows for example.

The vector field u = u(z1, 9, 2) is axisymmetric (?without swirl”, i.e. u? = 0), if and only if, u"
and u* do not depend on # and

u=u"(r,z)e, +u*(r,z)e,,

where

er:(ﬁ,ﬂ,O), 69:(—%,ﬂ,0), e, =(0,0,1), rzﬂx%%—x%, 9:arctanﬂ.

T T T T I

A scalar function is called axisymmetric if it has no dependencies on the angular variable 6.

Indeed, for axisymmetric solutions, we have divu = 0,u" + “7T + 0,u* = 0. In the case without
swirl, Ukhovskii and Yudovich [29] studied the global regularity of weak solutions of the axisymmet-
ric Navier-Stokes equations applying the global regularity of the vorticity and the global a prior:
estimate ||[r~lwl||zr < ||r~two||r for r € [1,4+0oc]. Later on, Leonardi et al. [20] and Abidi [1] inde-
pendently weakened the regularity assumption for ug € H?(R3) and ug € H %(R?’). Furthermore,
Abidi and Paicu [3] improved the regularity assumption to wp € L%’l(R?’) and 7 lwy € L%’l(R?’).
The recent breakthrough is from Elgindi [14] on the singularity formation of the 3D Euler equation
without swirl with C1® initial data for the velocity. Other results of axisymmetric Navier-Stokes
equations can be found in [10, 32, 36].

Similarly, the axisymmetric ”without swirl” MHD system in this paper means that the solution
of the system (1.2) has the form

(1.4) u(t,x1,x9,2) =u"(t,r,z)e, + u*(t,r,2)e,, B(t,x1,x9,2) = Be(t,r, z)eg.
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The global well-posedness of the axisymmetric ”without swirl” MHD equations (1.2) (with v > 0

and p = 0) was established by Lei [19] for the initial data (ug, By) € H*(R3), s > 2 and BTg € L.
Recently, Ai and Li [5] weakened the condition to (uo, By) € H'(R?) x H*(R?) and 2 € L2
For regularity criteria for the axisymmetric MHD solutions, one may refer to [21, 30, 35] and the
references cited therein.

Consider the case that the anisotropic Laplacians v, Ay +v,02 and Ay +p,0? have only vertical
viscosity and magnetic diffusion, that is, v, = up, = 0 and v, > 0, p, > 0, the system (1.1) reads as

ou+u-Vu—1,02u+VIl=B-VB in RT x R3,
B+ u-VB— u,0°B =B - Vu,

divu =divB =0,

(u, B)lt=0 = (uo, Bo);

and its corresponding axisymmetric ”without swirl” MHD system can be rewritten as

(1.5)

du” + (u' 0y + w0, ) + 0,11 — 9P = — B
ou® + (u" 0y + u?0,)u® + 0,11 — 0%u? = 0,
oB? + (u"0, +u?0,)B? — ?BY = wB

T
Ou" + = + 9.u* = 0.

(1.6)

For the initial data (ug, Bg) € H?(R3), and BTg € L?N L>®(R3), Wang and Guo [30] established the
existence of the unique global axisymmetric solutions to the system (1.5).

We remark that in previous works, well-posedness results were established for the initial data
with high regularity. With the high regular initial data, the Lipschitz norm of the velocity w is
locally integrable with respect to time ¢ in R™, which ensures the propagation of the regularity of the
solution. A natural and important question is whether a corresponding well-posedness result can
be obtained for low regularity data. This kind of result may be helpful to understand the possible
blow-up mechanism of the solution to the system (1.5), and shows that the model is applicable for
general data without high regularity.

Our aim is to establish a family of low regularity global unique solutions to the axisymmetric
"without swirl” MHD equations (1.5). Notice that the vorticity Vxu = weeg with w? def o0,u” —0pu”.
Setting w def 0 and b2 B we know from (1.6) that (w, b) satisfies

Ow + (u-V)w — 02w = —8z($) + Lw,
(1.7) b+ (u-V)b—02b =" b,

T

w=(=A)1V x (wep),
def 2
where the operator u -V = 4", + u*0,.
Our main result is given as follows.
Theorem 1.1. Let the initial data (wg, by) satisfy
(1.8) wo, T_lcU(] S L%’l, by € L3’2, T’_lbo S L%’l N L32.
Let ug be an axisymmetric solenoidal vector-field with vorticity woeg which is given by the Biot-

Savart law:
1 (X —Y) x (woeg)(Y)
w(X) =17 /Rg X — Y a¥,

and By be an azisymmetric solenoidal vector-field with the form By = bgeg. Then, the system (1.5)
has a global in time axisymmetric solution (u, B) such that the vorticity w and the magnetic field
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beg satisfy
w, v w, v e LS (Ry; L2Y(RY)),  Ouw, 1 0w, r10.b € L2 (Ry; L2 (RP)),
b, r71b € LS (Ry; LP2(R?)).

Moreover, if, in addition, the initial data (wo,by) satisfies

(1.9) wo € L3, Quwo € L3, by, v tby € HY,

then the vorticity w and the magnetic field beg also satisfy
we LS (Ry; I¥U(RY), dwe LS (Ry; L3 (RY), 0.0,w e L}, (Ry; L2 (RY),
(V0,V0) € Lig (By: L(BY),  (0-Vb,0.2) € L (R L(BY),

and the solution is unique.

Remark 1.1. Theorem 1.1 coincides with the primary conclusion of the Navier-Stokes equations
in [3] if the initial magnetic field By = 0. In comparison to the result in [30], the uniqueness of
solutions to the MHD equations (1.6) with the low-regularity initial data in Theorem 1.1 is more
challenging due to the lack of the control about the velocity u in L} (R*; Lip).

loc

The proof of Theorem 1.1 is completed in Section 4. We now present a summary of the principal
difficulties we encounter in our analysis as well as a sketch of the key ideas used in our proof.

To obtain the existence and uniqueness of regular solutions of the system (1.5), we need to estab-
lish some higher-order estimates of the velocity field for all T > 0. Since the system is degenerate
along the horizontal direction, it is necessary to establish some new a prior: estimates that over-
come the difficulties caused by the lack of smoothing effects in the horizontal direction. To achieve
this, some high-order estimates should be obtained from the system (1.7) about b and the vorticity
V X u = weg with w = 0,u" — d,u®. As in the study of the 3-D axisymmetric Euler equations,
for the global existence of the solution to the system (1.7), the point is to control the quantity
|7~ " | L1 (L~)- Indeed, compared with the case in the 3-D axisymmetric Euler equations, the ver-

3 ,. according to Proposition

w ,
" HL% (L3
2.2. Toward this, we introduce the unknowns (2,T") := (%, g) satisfying

tical dissipation provides the bound of Hr‘luTHL%(Loo) by ||0-

1.10) {atQ +(u-V)Q— 020 = —0,(I?),

T + (u-V)[ — 02T = 0.

The energy method applied to (1.10) may give necessary a priori estimates for the proof of the
global existence of the solution to the system (1.7) with the initial data (1.8). Nevertheless, it’s
subtle to get the uniqueness of the solution to (1.7) since the above estimates is not sufficient to
ensure the control of the quantity ||V uz1(zey. Our strategy for proving the uniqueness lies in
estimating the system (see (4.3) in Section 4) satisfied by the differences between two solutions
with the same initial data. Due to the presence of the vertical dissipations in (4.3), we need only
to bound the quantities F;(t) with i = 1,...,5 in (4.4)-(4.12) below. Toward this, we can adopt the
energy method to get the bounds of these quantities under the assumptions (1.9).

The rest of the paper is organized as follows. In Section 2, we recall some properties of the
Lorentz spaces and basic lemmas on axisymmetric functions. Section 3 is devoted to some a priori
estimates for the system (1.5). Finally, we present the proof of Theorem 1.1 in Section 4.

Notations: We shall denote [p;-dx = 2r [° [ -rdrdz. For A < B, what we mean is that
there exists a universal constant C, which may vary from line to line, such that A < CB. Given
a Banach space X, we shall use (alb) to represent the L?(R3) inner product of a and b, and
| (a,b) ||x = |lal]|x + ||b]|x. The notation C), is a positive constant depending on p.
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2. PRELIMINARIES

Before to introduce the definition of the Lorentz space, we begin by recalling the rearrangement
of a function. For a measurable function f we define its non-increasing rearrangement by f* :
R+ — R+ by

o) & inf{s >0

{allf@) > sh <A}

Definition 2.1. (Lorentz spaces, see [6]) Let f be a mesurable function and 1 < p, ¢ < co. Then
f belongs to the Lorentz space LP9 if

1
. 1
def ( (tr fH(t q@>q <o if g< oo
[£llgea 2 L™ 7075 ’
SUp;so t7 f*(t) < 00 if q = oo.
Alternatively, we can define the Lorentz spaces by the real interpolation (see [6]), as the inter-
polation between Lebesgue spaces:
def
1P (L L) .0,

With1§p0<p<p1§oo,O<0<1satisfying%:;;09+]%andlgqgoo,alsofELI”qifthe

following quantity
def [ [, _ dty ¢
£ ([ K0T’
0

is finite with

def .
K(f,) = it {|lfolleeo +tll fillm | fo € L, f1 € L'}
f=fo+f1

The Lorentz spaces verify the following properties (see [23] for more details) :
Proposition 2.1. Let f € LPv%, g€ LP?>% and 1 < p,q,p;,q; < oo forj=1, 2.
e [fl<p<ooandl <q< oo, then
1fgllzea S [ fllzoallgllzes.

1 1 1 1 1 1
[ ] = = — _ = = = —_
If P p1 + P2 and q q1 + q2’ then

1 fgllra S| fllzevar|lgllLeza.
e [fl<p<ooandl <q<oo, then

1 gllzea S [ fllzeallglip
1 _ 1 1 1_ 1 1

e If1 < p, p1, p2 < 00, 5—4—1—1)—1—1—1)—2 (mda—q—l—l—q—Q, then

1S * gllzea S 1 fllzeva |lgllzeaia,
— 1 1 _
for p = oo, cmdq—l—l—(?2 =1, then

1S * gllzee S I flzeva llgllLe2-co.

e for1<p<ooandl <q <qo < o0, we have

LIM]I (SN Lp7q2 and Lp7p e Lp.

Let us recall also the interpolation inequality (see [11]) which allows us to obtain some embeddings
of spaces.

Lemma 2.1. Let pg, p1, p, ¢ in [1,4+00] and 0 < 6 < 1.

o If ¢ <p, then

[LP(LP0), LP(LPY)] .0y < LP([LP0, L7 (g.9))-

(0,9)
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o Ifp <gq, then
LP([LPO7LP1](97(1)) N [LP(LPO%LP(LPI)] (0.0)"

Recall also the definition of Lebesgue anisotropic spaces. Denote the space L5(R; L(R?)) by
LY(L}) with the norm

def P 1
ez ([ (1021 dody) ).

Similarly, we denote by L} (L%) the space LY(R?; LP(R)), with the norm

f q 1
gy ([ ([ 12 dz)? dedy) .
R2 R

Lemma 2.2. (See Lemma 3.1 in [3]) Let 1 < p < 2 and f € LP(R™) such that 8;|f|2 € L2(R™).
Then

" 2-p
(2.1) 19: fllze S NOLFIZ M L2 FlI 2 -

Thanks to Proposition 3.1 in [3], we readily get the following proposition (up to a slight modifi-
cation).

Proposition 2.2. Let u and b be azisymmetric solenoidal vector-field and scalar function respec-
tively with vorticity w = w’eq, which solves the system (1.7). Let (p,q, \) € [1,00]3, then we have

W =w!=b=0 on the azis r =0,

and the following inequalities :
) If%§p<oosuchthat%:%+%, then

u"’

w
lull o S lleollzans = loen S Nzars 100" [oa S 10:00] Lo,

.
w
10:ul ox S N02wllzan, 110207 Mpor + 10767 on S N0kl Lo + 11l o

oIf3§p<oosuchthat%:%+%, then

r

l s S 10lzans 1l S10:Zlgan I lmn S 19l zas + 12 oo,
10=0 || Lox S 1020,w][ ar + ||3z%||mm [0ru" || Lo S 11020rw]| pax + Haz%llmw
e [In the limiting case p = oo, there hold
fullse S oo, 7o S 100l g0 1 e S 10:20 5.
Jollzee S 00wl g+ 120, 00 101w S 100010 + 10211 5.0

w
[0ru || Lo S Haza"“wHL%,l + HaZ;HL%,I'

The proposition given below can be found in [22], which we will use in the proof of higher order
estimates of (u,b).

Proposition 2.3. ([22]) Let u be a free divergence axisymmetric vector-field without swirl and
w =V xu. Then there hold

L oA ) 2% a8 (%)
r r r r
and .
u w
Haz(7)HLP < CH;HLF, 1<p<oo.
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3. A PRIOR ESTIMATES

Proposition 3.1. Assume that 1 < p < 0o, (Q0,T0) € LP x L?, u and b are regular axisymmetric

such that divu = 0. Let d:ef% € L°(LP) and T d:ef%

(1.10). Then there are

€ L{°(LP) be reqular solutions of the system

2
b 2
(3.1) IT@ze + CpllO=\T12 [ 22 2y < [Tolle,
and
2
(3:2) 120) e + Coll0-121% 25 2y < CI0llzo + VAT zs)-

Proof. Let’s first control I' in Lebesgue spaces. For 1 < p < oo, multiplying the second equation of
(1.10) by |T|P~!sign T', and then integrating by parts, we obtain from divu = 0 that

14 Ap—1) »
(3.3) EaHFHip + ———2]10:||2||7. = 0,

which yields (3.1).
In order to control €2 in Lebesgue spaces, we will split it into two cases: 1 < p < 2and 2 < p < 0.

Case 1 : 1 < p < 2. Taking the L? inner product of the second equation (1.10) with
[P~ sign(€2), we find

1d P 4(p—1) 212 2 —1g

. 17 - o5 Y < — Uz P )
(3.4) S+ 2o < [ —o.reiartsign s
which implies

1d 4(p—1) P _
(3.5) Z;EHQH’L) + TH(%IQP 172 < 10:-T2 o |27
Hence, there holds
2 t

(3.6) 190) 17+ CollO-90 g < [0l + [ 0Tt

In order to close the above inequality, we may obtain the equation of I'? from the I'-equation in
(1.10) that

(3.7) OT? + (u-V)I'? — 0°T% = —2(9.T")2.
Similar to the argument in (3.4), we have

(3.5) IT20)18, + Collo 2 2 1 < T3,
Thanks to (2.1), we have

t
p 2—
/0 10:T213, dr < Cl10-T2 2|25 1) 12132 1y < CITE1Z-

and then, we get, for 1 < p < 2,

(3.9) IT2 () |e + Cplld-T? || 210y < CIITGIzr,
and
(3.10) 10:T2( 13 1oy < VEIOT?|| 210y < CVET Lo

Inserting (3.10) into (3.6) implies (3.2).
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Case 2: 2 < p < +oo. Thanks to (3.4), we have

d 4(])— 1) P 2p—2 D p—2
(3.11) &HQHZL)/P+7H62|Q|2H2L2 < I/ I2(0:102)|9] 2" da,
p p R3
which leads to
d 4(p — 1) P P p=2
(3.12) allﬁllip + A1) 10:12]2]17> < Cpll 0122 || 2 D3| 2] 2 -

Thence, Young’s inequality implies

2(p—1)

d e _
(3.13) a1 + 19:122 72 < CITZ|Zsl127,".

Combining (3.13) with (3.8), one obtains (3.2).
Therefore, we finish the proof of Proposition 3.1. 0

Remark 3.1. For 1 < p <2, thanks to (2.1), we have

10:T e < 10: T2 NalTl 3 02w < -1 2l

which along with (3.1) and (3.2) implies that

IT@lze + 10-Lll 12(2py < CllTollzr,
(3.14) IT2 @)l + 18:T2]| 1210y < CITG Lo,

1200) 120 + 10: Q1 21y < C (100120 + VEITE]I1)
Remark 3.2. We denote by T and S the following linear operators:

T: P — I[P S: LP — L(LP)
Qo — O Qo — 0,12,

with Q solution of the system (1.10). By definition, we know that T and S are linear operators, then
thanks to Propositions 2.1 and 3.1, Lemmas 2.1 and 2.2, and Remark 3.1, we obtain for 1 < p < 2,
1<q<p,

121z + |

aza\

< , 2 )
prmay < C(1%0llss + VATl F2nr )

IOl zea + 10:Tll2(1pay < CliTollzoa, 1T (@)Izra + 10:L2]| 2(1pay < CITG || z0a-
While for 2 < p < o0, 1 < q < p, we have

(316)  [20)lee < C(I0llna + VETolZama0) and [D@llzsa < [Tolza.

Corollary 3.1. Assume that (Q9,T) € L3 x I32 andu a regular axisymmetric vector field such

that divu = 0. Let Q def =S L;’O(L%’l) and I’ d:ef% € L°(L3?) be a solution of system (1.10).

Then there are

1
D@l + 10T, 3 o < ITollzee,
t

(3.17) )
9001 3. + 1000, 3.0, < CUIRoll, 3.1 + VEITolsa).

In particular, we have for allt > 0,

t u” t w
(3.18) [ 1 limar < [ 1021500 < OVEIR0, g+ VAITOlE2).



GWP OF AXISYMMETRIC MHD 9

2
Proposition 3.2. Let 1 < p < oo, *2 € L%’l, b7° e L32,  wo, bo, b7° € LP. Assume that
w € LP(LP) and b € L{°(LP) be a solution of the equations (1.7). Then there hold

b2
(3.19) |l (t) LQ(LQ) < C(llwollzr + VEI-212r) e,
5 CAot)

(3.20) H*( LQ(LQ = CH?HLpe RAYN
and

2
(3:21) 1B(t) ]| o + 110=1b[2]|72 2 < Cllboll Lo,

Ly (L?)
where

def
Ao(t) = Vi(IIQ0ll, 31 + VE Lol 7s2)-
Proof. Due to the second equation in (1.7), we find

2 2 2 u” 2
(322) )+ (e V)() — () = 2 (@07 + (L),

Hence, for any 1 < p < +00, we have

2
a2 ST+ Y]

which imphes

(3.24) FTL%

1d v ( 1)‘
p?

Gronwall’s inequality along with (3 18) leads to

(3.25) sup ||—( —i—‘
T€[0,t]

and then

(3.26) sup |12, + o1
T€[0,t]

L < IR o€ [ 1 e () e} < [ B0,

CA
| OHLpe ot

L2 L2)
Similarly, from the b equation of (1.7), we have

p

2
(3.27) sup ||b(7) P ; < C||bo]| reCAe®.

T€[0,t]

Case 1: 2 < p < +oo. Taking the L? inner product of the vorticity equation in (1.7) with
|w|P~tsign(w), we obtain

1d 4p—1)
Sl + = |

:/RB . |w|pdaj/ 0, ( |w|p Lsign(w) da
b2 1
= /]R3 . \w]pda:—i—/R?)( . 0, (Jw|P™ sign(w)) dz.

Hence, using Holder’s and Young’s inequalities, one has

d 4p—1)
Sl + =0

(3.28)

N[

2
d:|wl|?
L

2 [/ b4\w|p *dz]
L2 3 12

u” »
o S Il llwllze + (0 = 1)

(3.29) ) o 2
3 2 -2
E| L+ 15 el + Coll S sl
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for any positive constant 1. Hence, taking n =

%, we get

2(p

d —1) P2 ur b2 s
(3.30) gl + == ouket® |, < OISl ol + I a1

Gronwall’s inequality implies

» 2 t b2 9 T .
sup. ot + 0ol B[ o) < OOl + [ I ol ? dryec 12N
T7€(0,t t
(3.31) 2 o
C(llwollZs ) ) [l oy ) e 40,
which along with (3.25) implies
2
(3:32) ol raiay < Cllwollze +1 0||L VE)eC o,
Case 2: 1 < p < 2. The energy estimates infer that
1d 4(p—1 2
ettty + 22D o), = [ L [ 0. Sop s do
(3.33) pdt" L p? L2
< H*HLO@HwH + 119 ( )HLPHwH
which along with (2.1) gives rise to
1d 4(p—1) 2|2 u” b2 v b 2-r
(3.34) EEHWHQP + T‘ O:lwl ||, < 1= lleeellwliz + Cll0=(—- )2 2l 123 NIz

Thanks to Gronwall’s inequality, we deduce

' b* .\ p b? 2 CAo(t)
(3.35) sup [|lw(T) LQ(B < C([lwollzr + i !@(7)2HL2H7HUD dr)e ,

T€[0,t]

which follows
b2

2—p
(3.36)  sup [jw(7) < (IlwolleJr\fII@( ) Iz L2)|| IILé(Lp))GCAO(t)-

TE[0,¢] L2(L2)
Therefore, due to (3.26), we find
2 b2 A
3.37 sup |lw(T 2" < C(llwollze + VE|| 2| 1p)eCA0®,
(3.37) TE[MH () raey = € llwollzr 1=2l2e)
This completes the proof of the proposition. O

Thanks to Proposition 3.2 and Lemma 2.1, we have the following results.

Corollary 3.2. Let the initial data (wo,by) satisfy

w 3 b
wo € LP1, Lzl peLP2NLPY, and 2 e L2232
T T

Assume that 1 < p < oo, 1 < ¢ < p, w € L(LP?) and b € LP(LP1) be a solution of equation
(1.7). Then there are

o if1<p<2,1<q<p, then
b2
— Jlw®llzra + 10:0[l z2(zray < C(llwollra + VE[ 2] Lra)eC 0D,
— [b(t) |z + 119:0 1220y < Cllboll a0,

2 2 b2
— [E @m0 +10: L3000 S O1 B 15000,
o if2<p<oo,1<qg<p, then
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52
— lw®llzra < C(lwollzra +VE |2 1r.a)eCA0@
— ||b(t) || zra < C|lbo|| praeCA0®,
2
~NE®) | pra < O 8| paeC O,

In particular, if wy, 5 € L%’l, bo € L2, and r—'bg € L3N L32, we have
C(llwoll 3., + V2l OH g.)eCM0,
oty < Clr ol g, + Vil ol

bo
2(L%’1) < CH?HL%J’

el g 1, + 1952

_1w

L2(L§ -

I +r 0wl

ufnm 0.
b2 2
) H 1021

(3.38)

b2
< OYIR 5,40,
T

A
H;HL;”(L&?) < C||7||L3«27 16l e 2.2y < Cllboll p2.2€C o),

Below we give more higher-order estimates which will be used in the proof of uniqueness.

Proposition 3.3. Assume that the initial data (wo,bo) satisfies
wo € L3NNI, iy e L3, boe L2NL32, by e L32n HL.

b . .
Let 2 a solution of the second equation of the system (1.10). Then

b b bo
(3.39) ”v;(t)”%ﬁ + Hazv;H%f(Lz) < CHV7”%2 exp{C Ao(t) + CAl(t)eoAO(t))},
where

Ay(t) £ tllwolF s +t2HV 17211b0l172 + HWoll2 44 +tHb0HL52H 21125.

Proof. Multiply both sides of the second of (1.10) by —Ag, then integrating by part yields

b b

b b . oo b1 5 b
IV 2IZ2 () + 10:V 72 1) —27T/RQ+(u Or— +u 0. ) (~0n(r0, —) + 02 )rdrdz

(3.40) = 27T/ uT&,é&n(r&«é)drdz + 277/ uzazéar(rﬁré)drdz
R?F T T Ri r T
r b z b 2b A
+2r | (WOr—+u®0,—)0;—rdrdz = I + I + Is.
R? r r’ cr

Note that O,u" = —“T—T — d,u*, so we find

" b " b 1 b
L = 77/ u—&«(r&ﬂf)zdrdz = 7r/ U—TQ(E)T*)Zdrdz — 7['/ —Opu"r?(0p =) drdz
R2 r r r r

r
+

Toob b
= 27r/ u—(8r7)2rd7’dz +7 O,u* (0p~)*rdrdz
R2 T

T T 2
2 R

"oob b b
= 27r/ u—(8r7)2rd7“dz - 271'/ u®(0r—)0,0r—rdrdz,
R?‘r r T R?F r T

which implies

u” b b b
1] S = e 10r— 172 + lull e 1020~ 112110, 2.
r r r r

11
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By virtue of 0,u* = 0,u” — w and integration by parts, the bound of /s has

I = —27r/ u* 0,0, bOTbrdrdz — 27 Oru'zazé@rérdrdz
R2 Ri r T
b_.b b.b
— —/ u?0,0,—0,—dx +/ (w— 0,u")0,—0r—dx,
R3 ror R3 ror

which along with the facts ||0,u” |13 S ||82wHL% and [|ul|pee S ||wl| 31 gives rise to
< NIz b b , b b
12| S el 1020, Nl 22 110r ~llz2 + (lwll s + 106"l ) 102 2o l10r ] 2
b b
S (lwllzss + 10wl )10V M2Vl 2.
By Holder’s inequality, we have
b b < b b
13| S Nlulle= [V =ll22[10:V =2 S llwll 21 |0V [ 2|V =] 2.
r r T r

Substituting I — I3 estimates into (3.40), from the fact ||u||ge < ||w||f3.1, we obtain

b b

HV;(t)H%2 + ||5ZV;H%§(L2)
u” b b b b b
S I = IV 13 + ol 192122009 2 g2 + 10l 3 10:9 252192 2

which along with Young’s inequality implies

HV (72 +110:V— HLz 12y < C(H*IILOo + [lwlZss + 10w 4 )IIV*HLQ
Hence, applying Gronwall’s inequality gives rise to

b2 b2 bo 12 Lo 2 2
341 IV=()lz2 +10:V—l72(12) < CIV—_ll2exp{C [ (| —llze + llwllza1 + 0:w] 5 )dT}
r ro ot r o T L3

Thanks to Corollary 3.1, Proposition 3.2, and the Sobolev embedding H'(R3) — L&2(R?) (see
[25, 6, 28]), we know that

UT
H?HL;X’(Loo) < C’(HQOHL%1 4 \/iHFOH%&Q);
bo
lwllzge(zsy < € (lwoll s + VeI sz ool o) 40
b
< C(flwollsa + \/i||V—°|yL2|yv bol| z2)eCA0®),

CA
[EX <C(HW0||231+tHbOHL32|| [352) 40,

L3 (L3

Substituting the above inequalities into (3.41), we get (3.39), which concludes the proof of Propo-
sition 3.3. 0

Remark 3.3. Thanks to Theorem 5.3.1. in [6], we have the following interpolation inequality

2 1 2
HbOHL32 (R3) ~ ”bOH % 3)\|50H26,2(R3) S HbOHE%(RS)HVb0Hz2(R3)’

1
3
L

where we used the embedding H'(R3) < LS2(R?) (see [25, 28]), which implies that
3
L2

L2(R¥) N HY(R3) c L>}(R?).
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Proposition 3.4. Assume that the initial data (wo,by) satisfies
wo € L3, rlwge L3, boe L3N HY, rlby e L32n HL
Assume that (w,b) is a regqular solution of the system (1.7), then there hold
A
(3.42) IV bl 72 +10:V bl 722y < CIIV bol72 exp{C Ao (t) + CAa(t)e P},
where
def 2 —1 2
Ag(t) =tllwollpsr + 2 [V(r™"bo)ll L2V bol| 2 + tllwoll 73,
+ 22|V~ bo) |11V boll 72 + llwoll? 5., + £l bollZs.2 1Bol[Zs.2-

Proof. Acting the operator 9, to the second of (1.7) yields

"b
(3.43) 8:0,b + (u - V)b — 020,b = a,(“r ) — B,u"dyb — Oyurd,b.
Multiply (3.43) by 0, b, then integrating by part gives
b 0.0,b O (—)0bdr — [ Ou"(8,b)*dr — | 9,u*0,b0,bd
ay 2apl0E 1000 = [ 0. Prowds — [ arony e [ owosabas
£ Ky + KQ + K3.
By using of o,u" = —% — 0,u”, we have
K = / —u—é@ bdzx + Orurbarbdw+/ u—(&nb)2 dx
R3 rr R3 r R3 T
= —2/ “—98 bdx — 8Zuzéarbd:r —i—/ “—(aTb)Q dx
R3 T T R3 r R3 T

T b b T
——2/ Ub(’?rbda:+/ uzazarbdw—i-/ uzazarbda:—l—/ u—(arb)Qda:,
R3 T T R3 T R3 T R3 T

which by Hélder inequality infer to that
u” b u”
Kl < 21 e 2 9,0l e + 15 e b

b b
+ HUZ”LOOH@;HBHarme + HazarbHHHUZ”LOOH;Hm-
Along the same line, the bound of K5 yields

Ky = / Y @0)2de+ | 9.u7(8,0)2 dr = / Y002 dr + 2 / w?8,0,b0,b da
RrR3 T R3 T R3

R3
u" 9
< 15 e ll0rbll72 + || oo 10:0:bl1 12119 bl 2
By the definition 0,u* = w — d,u", we get K35 = ng, w0,b0,bdxr — fR3 0,u"0,b0,.b dx, which follows
[Ks| < (lwllzs + 102071 13) (|02 L6 [| 0-b]| L2
Due to the fact ||0,u"|| s < C’H(?ZwHL%,S, we find
(K3 S ([wllzs + 10=wll 5.5)110:V b 2|0 2.

Inserting the estimates of K-K3 into (3.44), we obtain

2dt||3 blIz2 + 110:0,bl72 < C(llr™ " [z + [lu®[| 7o) [ (D20, 77 B)]1Z

(3.45)
+ C ([0 oo + [lwll s + 110201, 3 )07, 7710) 121102 (8rb, D:b, 7710)|| 2,
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which along with (3.1) gives rise to

%Jlor, r0)[[Ze + 10:(0b, r7UB)IZ: < Ol "o + u*[[Z)11(0rb, = 0) 72
+C(lwllze + lwllps + 1001 5 )15, 7= 0) 21|02 (8,b, 0:b, 77 b)]| 2.

(3.46) 2 dt

We may repeat the above argument to get the estimate of ||0,b|r2. In fact, acting the operator
0. to the second of the system (1.7) yields

(3.47) 0100 + (u - V)d,b — 820.b = d,u” (r~1b — 0,b) + r~u"9.b — D,u*d.b.

Multiply (3.47) by 0, b, then integrating by part gives

1d
53192 bll72 + [192b]|72
= o.u" (r~ b — 0,b)0.bdx + / r " (0,0) dr — | 0,u*(0,b)* da
R3 R3 R3
= —/ u"0,[(r~tb — 9,b)0.b] dx+/ T_lur(azb)de+2/ u?0,b0%b dz.
R3 R3 R3

Hence, we have

5 10 + 1921

< " e (Ilaz(r‘lb = 0;0) 22 110:0ll 2 + [[(r™ o — 8,) | 2 H&?bllm)
o (I g + 2 3 ) 10:]2,
which along with (3.46) implies

-1 -1
thH(c’)b r b, 9:0)[122 + [10(9:b, v b, 0:0)|12.

< (Il u s + 16 30 ) 1016, 70, 0.8)[12
+ C(llull o + 1wl + 1001 .0 ) 10D, 771, 0:0)11219(Drb, 7718, 0:8) |12

Thanks to Young’s inequality, we find

d
dt

< O, w) o + ullfe + llFa + 10012 3., ) 100, 770, 0.0)13s,

—|(9yb, 77D, 0,0)||22 + [|02(Drb, 7D, D,b)]|%2

which follows that
H(arb7 rilbv 8217)”%,2 + HaZ(arb’ rilba 8217)”%3@2)
< C|(8rbo, 1~ bo, D-bo)||22
2
<o { [ 16 s+l + ol dr+ Pl g )

Thanks to (3.18), we know that

(3.48)

lullze + [l s < Cllwlgss < Clwollgss + VE[r~ 05 psa )P,

- CA
Ol g0+ 10515 31, < Ol g0+ VEI 8Bl .)€,

(3.49)
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Hence, inserting (3.49) into (3.48) yields
IV 003+ 10V bl 2) < CI by} 264"
x exp{C (tl|wol| 31 + t2 |r b3 r.
+ tHWOH%B,l + ¢2 H’r‘_lb(Q)H%B,l + HOJQHigl +1 Hr_lb(Q)Hi%J)@CAO(t)}

which implies (3.42).
Hence, we complete the proof of Proposition 3.4. U

Proposition 3.5. Let the initial data (wo,bo) satisfy
wp € Lg’l, ’I“_le € Lg’l, Orwp € L%, by € L*?n Hl, T_lbo € H'.
Let (w,b) a regular solution of the system (1.7). Then

(3.50) 100l 3, + 190l 5, < Cltw0, Bo).

(L2)

Proof. Multiplying the equation verified by d,w by \8rw|%sign (Orw) and integrating in space, we
obtain

53710y + G100l < 20 Clam ol + | 0.0%l0wlbae
(2"7HL°°H*” +[|0:u *H s+l s Hé?erQ / 9.0, ( \aerdw
where g1 := —0,u"0,w + wo,w. Integrating by parts and using the Cauchy-Schwartz inequality, we

have

3
/ 0.0 |Oy| = —2/ w00l 0110, e < 2 g 0110l 00w
3 R3 L2 L2

/aa )0y do = — /a ]8Tw|2dx+2/ 88b[8rw\2dx+2/8 % 9,6/0] b da

< (o1,

S (10501, 3 + 19 2la 00,001 + 10-9 2 2110802 ) o
~ =02/ 3 ’I”L2 20r0|| L2 z TL2 0| L2 TUJL%

[V8)

+ ||;||L6||aza7“b||L2 + II@;IILG\I@rbIIm) ||3rwllig

leo

As a consequence, we have
d 3 3
%Harw”z% + [|0:0rw|4 ”%2

u” 3
< Zlyoo Z(|2 2 el “ d 2
(350 5 (1% o + e Y10l g + (100715 + 1 e 120, + lanl 5 ) I9rl
b? b 1
+ (19:C)l g + IV 2210:0,b] 12 + uazv;umuarmm) orll?

By Holder’s inequality, Proposition 2.2 and interpolation inequality, we have

105w *II ML N H*H%H8 *II

2
3
h(L L
2
3

w 2
,srr;\|;%\|az;||Lg||azw|r; 207, o2

2 1
S ol (100007 +10: 215 )

109
Lh

Hasz“s 19 3rw\|33,
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and consequently by Lemma 2.2 and Hélder’s inequality, we obtain

w 1
106”1l g l10rwll” o H*||33||a || 3 ||3sz33 H&,wH?
l
+ H*||33||a *H33 ||<9sz33 10 |8Tw\4||L2||8er JEY
and then
w 1 3 w1 w 2 1
100”1 g 10rwll” y < €]|0z|Ore] s 172 + ClI-17s Haz*HLg 10074 l10rewl” o

+Ce ||*||53 10- HL3 9=l : gllore] ¥

Mwo‘\'

On the other hand, thanks to Proposition 2.2 again, we find

lgill g S 18-l o0l z2 + |2l zol1: ]2 122 S 100132 + IIWIIlela w]2) .

Thus in view of (3.51), we obtain

d 3 3 7
10l g +110:10,w[1 172 < (H*HLOO + \|UZHL0<>>H<9TWHQ +11 . H;;Ha H 3 Hasz5s 1orwll 1
T

(1 D120, 5 + Nl + ol 10 ol
b? b L
10l g+ 19 2l 2010:0,b 2 + 189 2 all9,blL e Y 0ol

which along with Lemma 2.2 and Proposition 2.2 implies
d 2 3 w2 w4 4 3
0ol y + 10:100l3 12 5 (1021, 5.0 + Dol + 1215 10 21F s 0wl Y l0ro
w w 2 : $ 2 3 3
+ (Haz;lng,lllfll 3 + ||*|| 5 II@;HL%H@WHL% + [10:w] 72 + [lwl 75 [10:]w]2 || L2

b b 1
+||<9( )II +\|V;|!L2||3z3rbllm+II@V;IILzII@rbHLQ)II&«sz%

Then Gronwall’s inequality implies that

10rcoll 3 + 1900l 5,
< Coxp(Cl10: 21y g, + 19y + 1502, g 1215, 5 0y, 4 )
050 (100l g 0020 g 1y IS, g 0 20E, el
11013 ) + Il e g [9shol 13 2y + 195 2>||L1(L2)

+ ||V;||L§(L2)||azarb”L§(L2) + ||8zv;||L§(L2)||8rb||L§(L2))-

Therefore, inserting (3.38), (3.39), and (3.42) into (3.52) implies (3.50). We then complete the
proof of Proposition 3.5. O

4. PROOF OF THEOREM 1.1

4.1. Existence part of the proof. First of all, we note that wg, 7wy € L%’I(R?’) which implies
that ugp, rtug € L¥(R3). Let up € L>*(R3) be an axisymmetrical vector field without swirl

such that r~luy € L3¥Y(R3), wy € L%’l(Rg), and r~lwy € L%’l(R?’), and assume that the initial
axisymmetric data by € L32(R3) with r~1by € L3?(R3).



GWP OF AXISYMMETRIC MHD 17

Let J, the operator which localizes in low frequencies defined by

LA € Y x@emof©) (vnewn),

where x(§) is a radial and regular function, equal to which to 1 on a ball around zero, and f(§)
is the Fourier transform of f. Since (ug, Bp) is axisymmetrical with the form (1.4), we know that
(Jnuo, JnBo) is also axisymmetrical with the form (1.4) and also is regular (see for example [2]).
So, by [30], there exists a unique regular and global in time axisymmetrical solution (u", B™) (with
the form (1.4)) to the system

o™ +u™ - Vu" — v,0%u™ + VII" = B" - VB",
o™ +u™ - V" — p,02B™ = B" - Vu",
divu™ = div B" = 0,
(u", b")|t=0 = (Jnuo, JnBo),
that is,

ow" + V- (w"u™) — W yn 02w = —az((b:) ),
Y+ V- (L) — 928 =0,

u" = (=A)7IV x (w"ey),

(W™, b"™)|t=0 = (Jnwo, Jnbo).

(4.1)

Notice that J,wp and @ are uniformly bounded in L%’l(R?’), and J,by and @ are uniformly
bounded in L>2?(R3), we then obtain from Propositions 3.1 and 3.2 that:

{(u",w",b™) }nen  is uniformly bounded (u.b. for short) in
TR W) x LS, (R L2 ) x L5, (RY; L32);
Gy v
r T
{(0u™, 0,0 bneny s wb. in L2 (RT;WY2) x L2 (RT; L2Y);
{

b : -
{(@". 0= )puers is wb. in L (RY:LT) x L} (RY; W 12),

)Inen is uw.b. in L?;’C(R“‘;L?’vl) > L?(?C(RJF;LS,Q);
(4.2)

’I’L)T'

, tnen  is uw.b. in leoc(R_'_; LOO);

By standard compactness arguments and the Arzela-Ascoli lemma, we can obtain up to a sub-
sequence denoted again by (u™,b"), that (u",b") converges strongly to (u,b) in Cie(RT; L2 ) x
L1 n
Cioc(RT; H,, 2). Interpolating with the fact that (up, bT) has uniform bound in (4.2), we found that
1 n 3
u, = uin L (R*; H! (R3)) and b7 — 2 in L} (RT; L2 (R?)). This allows to pass to the limit in
the nonlinear terms and we conclude that (w"u" — wu, %u” — %u, %b” — gb, w — "T”’) in
D'. Finally, by passing to the limit in the system (4.1) we obtain a global in time, axisymmetric

solution, without swirl, (u, B) of the system (1.5).

4.2. Uniqueness part of the proof. In order to prove the uniqueness of the solution for the
system (1.7), let (w1, b1) and (w2, b2) be two solutions, and define (dw, db) def (wo — wi,ba — b1)
their differences, which verifies the following system:

810w + (ug - V)ow — 026w = —(6u - V)wn + 20w + % 0y + 9, [db(brtba )],
(4.3) 0;6b + (ug - V)3b — 926b = —(5u - V)by + “26b + py,

(6w, 6b) =0 = (0,0).
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The functional framework where we control the differences of the two solutions is LP with g <p< %
The energy estimates imply that

w15u

1d 4(p—1) P u -1
L s+ 22 o 8| < e ol + 122
b1 + b2
+ 16w - V)wr | o | 0wl5, " + [0 0bll oo I Il s |dw 175
b1 + bz
+160] e 119 [ zellowllTs

Using Holder inequality, Sobolev embedding, Proposition 2.2 and Lemma 2.1, we have

wléu

lzr + [[(6w - V)wr | e

(II7HL2 + ol ) 16w

v

g+ 1001l g 1007 on s
- LY (L) LI
S (1523 + 10wl ) 10:0 ] o + 10:0,e01]l g 1607 ] s sy
Ly " (Lo ™)

» 2-p
B L Y L e
no (L

v

w1
S (121, + ol 3) |

Concerning ||0u*|| e s, and using the identity Adu® = 0,0w-+r~16w, we obtain by integration
Ly P (L37)

by parts that |0u®| < ﬁ * |dw|. Then, using the convolution law, we obtain
[[6w7]] g Slowll e S lowllze.
L, %P (L)

6 3—2p
p(v h v

The Young inequality implies that

d 2p — 1 2|2
@ sl + <p)Haz|5w\’5

b1
+ (l19:86] s [1(,

which follows that

< (12 + 1212 4 + w2y + o0l g )00l

b
)||L6+ 1061} ez (10 (V V= )IIL2>II5WHLP ,

10w o2 = < A oy 10wl s 1)
1 bl b
+ c(uazabu@ (Lﬁ%)u(?, Dlazaan) + 1901, o 10092 T2y ) 18l
where
def |, Uy 2 2
(44) F0) N a1, g 10l g+ 100l g

Hence, due to Fi(t) — 0 as t — 0T, we get that, there is €; > 0 so small that, if ¢ € [0, €], there
hold

2
oilp
< P )
s ge, = CRAONO L, oo+ CFOI

oo (L57)

(4.5)

where

def ., , b1 b def by bo
(4.6) F) SN Dlnzasy, Fa®) S 10V V) 1 a2y
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Due to (2.1), we arrive at

10wl Lee (1) + [[0=0w]| L2(Lr)

(4.7) 3p_ 1-52%
< C]:Z(t)HaZ|5b|6_p||Lf(L2)||5b||Loo( ) +CFs()l|ob]] C N
t
On the other hand, from the 6b equation7 the energy estimates imply
||5b|| =
2 p—6 —6
(4.8) < (ll(0w- Vibill e+ 1= 7l ll0Bl] oo + | I )H5b|| i

Again, using Holder inequality, Proposition 2.2, Sobolev embeddmg, we have
10w - V)ball oo < 110 MILP\I@ billpz + H5wHLPHa Vbl gz,
ou”

I e S MI0ull op H Nl S 110 5wHLpH 2

Notice that
|| (0w - V)blH & S < [[du" 01 || 6pp + HéuzazblﬂL%

(4.9)
S ||5UT”L3§715P 19:bullzz + 15w 5o (101l s

Form Proposition 2.2, we known that, for g <p< %,

lowll ap S N10z0wllze, (10wl 5o S ll0wllLe,
which along with (4.9) implies
10w - V)ball oo < 1100wl e[| Orball 2 + [|0wll e 102V bl 2.

For the last term of (4.8), again using the above embedding inequality, we obtain
| ou”

b1 b1
|| & S H5UT|| 2o 1=z S l10z0wll e | — |22
2p T T

and then, we arrive at

6p 3p_
H<5bH é; ‘ P, S (l9-0wl e 10-01 1| L2 + (0wl e 105V b1 | L2
Ug bl 76p:p6
R e P LR PR P Y IR
Hence, we have
_6p 1 _6p_
[[ob]|°™" i = 1) <Clr~ UEHLtl(Loo)H%HG‘p o
L (L Li (L oo (1,5-7)

(4.10)

—6

(0,01, 2 )HL2 r2) F10:V bl r2)) (1020w £2 10y + [[00]] Lgo (L) )H5b|! = p

F(Ls=r)

Substituting (4.7) into (4.10) gives rise to

6 p

6p
< Cllr~ N EY
2y S I all i ooyl H (1)

1—3p_ Tp—6
+ CFit) <f2<t>||az|6b|w|rLg<L2>|6b|er‘1-gﬁi FEOIH, )nabnﬁ .
L

e(Ls=r)

_6p_
0017 > +
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with
(4.11)
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def b
Fat) S 101, ) rzcez) + 10:V bl Ly az).

which along with Young’s inequality implies

with
(4.12)

2
0.|6b)77
L2(L

_6p_
L SCRGI?

_6p_
8657 g +] “
L (L6=P) L (L6=P)

def

Fs(t) = lr~ bl prreey + Fa(t)Fa(t) + (Fa(t) Fa(t))?.

Notice that F5(t) — 0 as t — 0+, so we get that, there exists €y € (0, €1) so small that, if ¢ € [0, €],

there

which

holds
2

0.|0b] 5
L2(L?)

)

_6p_
16157 o |
L3°(L

67p)
immediately follows from (4.5) and (2.1) that

[0w|| e (zry = 0.

Therefore, we obtain § b(t) = dw(t) = 0 for any ¢ € [0, ¢g]. The uniqueness of such strong solutions
on the whole time interval [0, +00) then follows by a bootstrap argument.

Mo

reover, the continuity with respect to the initial data may also be obtained by the same

argument in the proof of the uniqueness, which ends the proof of Theorem 1.1.
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