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1. INTRODUCTION

We consider in this paper the Cauchy problem of the following 2-D incompressible inhomogeneous
Navier-Stokes equations

Op + div(pu) =0, (t,r) € RT x R?,
O(pu) + div(pu ® u) — div(uD(u)) + VII = 0,
(1.1) .
divu =0,
pli=o = po,  puli=o = mo,
where p and u = (u1,us)? stand for the density and velocity of the fluid respectively, D(u) =
Vu+ VuT, 11 is a scalar pressure function, and in general, the viscous coefficient u = u(p) is a
smooth, positive function on [0, 00). Such system describes a fluid which is obtained by mixing two
miscible fluids that are incompressible and that have different densities. It may also describe a
fluid containing a melted substance. One may check [21] for the detailed derivation.
If u(p) is independent of p, that is, p is a positive constant (taking g = 1 for simplicity), then
the system is rewritten as the form

Op + div(pu) = 0, (t,z) € RT x R,
p(Opu+ (u - V)u) — Au+ VII = 0,
divu = 0,

(P, w)lt=0 = (po, uo)-

(1.2)

When py is bounded away from 0, Kazhikov [5] proved the global existence of strong solutions to the
system (1.2) for smooth initial data in two dimensions, also proved that the system (1.1) has at least
one global weak solutions in the energy space. However, the uniqueness of this type weak solutions
has not be solved. Considering the case of the bounded domain 2 with homogeneous Dirichlet
boundary condition for the fluid velocity, Ladyvzenskaja and Solonnikov [20] first addressed the

question of unique solvability of (1.1). In particular, under the assumptions that ug € sz%’p (Q)
(p > 2) is divergence free and vanishes on 9§ and that py € C*(Q) is bounded away from zero,
then they [20] proved global well-posedness of (1.1). Similar results were obtained by Danchin [13]

in R? with initial data in almost critical Sobolev spaces.
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In general, DiPerna and Lions [17, 21] proved the global existence of weak solutions to (1.1) in
energy space in any space dimensions. Yet the uniqueness and regularities of such weak solutions
are big open questions even in two space dimension, as was mentioned by Lions in [21].

On the other hand, if the density p is away from zero, we denote by a def p~t — 1, then the
system (1.2) can be equivalently reformulated as

oa+u-Va =0, (t,x) € RT x R?,
Ou+u-Vu+ (1+a)(VII— Au) =0,
divu = 0,

(@, u)li=0 = (a0, uo)-

(1.3)

Just as the classical Navier-Stokes system, which is the case when a = 0 in (1.3), the system (1.3)
also has a scaling-invariant transformation. Indeed if (a,u) solves (1.3) with initial data (ap,uo),
then for V/ > 0,

(1.4) (a,w)e(t, ) © (@ (2., 0), tu(e®-,0)

is also a solution of (1.3) with initial data (ag(¢-),fup(¢-)). Some results about global existence
and uniqueness of the solutions in critical spaces for small data were proved in [1, 3, 16]. Recently,
we [2] first investigated the well-posedness of the 3-D incompressible inhomogeneous Navier-Stokes
equation (1.2) with initial data (ag,up) in the critical spaces and without size restriction on ag.
For the two-dimensional case, when the density and the velocity have more regularity, Danchin
[13] proved the global well-poedness result of the system (1.2). More precisely, if 0 < m < pg < M,
pal — 1€ H™ and uy € H? with o, > 0, the system (1.2) is globally well-posed. Recently,
some improvements of this result have been achieved. Paicu, Zhang, and Zhang [22] investigated the
unique solvability of the global solution of the 2-D system (1.2) if 0 < m < pg < M and ug € H® with
s > 0, and the first author in the paper and Zhang [4] proved the global existence and uniqueness
of the solution to the 2-D system (1.2) if 0 <m < pg < M, pyt —1 € B%J N Bg‘om with a > 0 and
ug € BSJ, which is some extension of the results in the 2-D homogeneous incompressible Navier-
Stokes equations (see [6] for instant). In fact, it is well known that there is the gain of two derivatives
in L}OC(RJF,B%’I) starting from 33,1 initial velocity in the the 2-D homogeneous incompressible
Navier-Stokes equations ([6]). Without a positive lower bound of the density, Danchin and Mucha
[15] studied the existence and uniqueness of global solution to (1.2) if 0 < pg < M, [z po > 0 and

up € H'. It’s worth to mention that Haspot [19] proved the global well-posedness of the system
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(1.2) with small non-Lipschitz velocity ug € B2, ' and more regular density py;' — 1 € Byl
under some restrictions on py, pe, r, and €.

In summary, all the well-posedness results of the 2-D system (1.2) obtained so far are under the
additional assumption that the density or the velocity has more regularity compared to critical
spaces.

In this paper, we investigate the global well-posedness of the 2-D inhomogeneous incompressible
Navier-Stokes system (1.2) with large initial data in the critical space, which is almost the energy
space in the sense that they have the same scaling in terms of the system (1.1) (see Remark 1.1
below).

The main theorem of the paper is stated as follows.

Theorem 1.1. Assume that m, M are two positive constants and € is a positive constant in (0,1).
Let ug € Bgﬁl(Rz) be a solenoidal vector field and py* — 1 € B 1(]RQ) satisfy

(1.5) m < pyg < M.



2-D INS 3
Then the 2-D system (1.2) has a global solution (p,u, VII) with
- 1€ ORy; B3, (RY)

(16) we C(Ry; BY,(RY) N Lho(Re: B2, (RY)  and
atuv VII € Llloc(R+; Bg,l(RQ))

Furthermore, if, in addition, pal -1le B%yl, then the 2-D system (1.2) is globally well-posed.

Remark 1.1. Compared with the global existence theorem of weak solutions to the system (1.2)
in the energy space ([5, 17, 21]) (where initial data satisfies po — 1 € L®(R?) and ug € L*(R?)),
Theorem 1.1 requires that the initial density po — 1 € B%’l(]RQ)) which has the same scaling as
po—1 € L>®(R?) in the sense of the scaling-invariant transformation (1.4) of the system (1.2), and
the initial velocity ug € Bgyl(Rz) which has the same scaling and regularity as ug € L*(R?) in the
energy space.

The proof of Theorem 1.1 is completed in Sections 2-4. We now present a summary of principal
difficulties we encounter in our analysis as well as a sketch of the key ideas used in our proof.

The first difficulty to the proof of Theorem 1.1 lies in the fact that when a is not small, we can
not use the classical arguments in [1, 3] to deal with the following linearized momentum equations
of (1.3):

(1.7) Ou — (1 +a)(Au — VII) = f,
Motivated by [11] and [2], for some large enough integer m, we shall rewrite (1.7) as
(1.8) o — (14 Spa)(Au — VII) = (a — Spa)(Au — VII) + f,

with the low frequency part S,,a of a (defined in (2.2)). Then the basic energy method can be used
to solve (1.8) when we deal with the global existence of the solution to (1.3).

The other difficulty in the proof of Theorem 1.1 is how to deal with the uniqueness issue of the
solution. In order to solve this problem, the crucial part is, roughly speaking, to control the Lip
norm of the velocity w, which will conserve all the regularities of the density and the velocity in
critical spaces, as well as the smallness of the high frequency part a — Spa of a with m being large
enough.

As we mentioned above, if the density or the velocity has more regularity than the data in the
critical space, combining the losing estimates for transport equations with the theory of transport-
diffusion equations [6] provides the boundness of the Lip norm of the velocity, which will in turn
close the estimates in the proof of global well-posedness of (1.2) (see [22, 4, 15]).

In our critical case, there is no more regularity of the density or the velocity to rescue their losing
regularity when we solve the transport equation of the density or the transport-diffusion equations
in terms of the velocity.

For this reason, we need first to get, at least in a small time interval, the L([0, T); Bgl) estimate
for the velocity field (see Proposition 3.2), which relies on more elaborate application of Littlewood-
Paley theory, as well as the basic energy and the estimate of || VII|| LL(L?)- Based on this, together

with Osgood’s lemma applied, we solve the uniqueness issue of the solution to (1.2) in the critical
space. The global well-posedness of the system (1.2) then will be obtained from the result in [22]
as well as the smoothness of the velocity in the dissipative system (1.2).

The rest of the paper is organized as follows. In Section 2, we recall some basic ingredients of
Littlwood-Paley theory, and derive some qualitative and analytic properties of the flow, as well as
some necessary commutator estimates. We then prove the L'([0, T7; B%l) estimate for the velocity
field in Section 3. Finally, the proof of Theorem 1.1 is completed in Section 4.
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Notations: Let A, B be two operators, we denote [A, B] = AB — BA, the commutator between A
and B. By a < b, we mean that there is a uniform constant C, which may be different on different
lines, such that a < Cb and Cy denotes a positive constant depending only on the initial data. And
a ~ b means that both a $band b S a. For r € [1,+00], we denote {c;,}jez (or {¢j,}jenu-1}) @
sequence in "(Z) (or £"(NU{—1}) ) such that ||{c;,};lle = 1.

For X a Banach space and I an interval of R, we denote by C(I; X) the set of continuous
functions on I with values in X, and by Cy(I; X) the subset of bounded functions of C(I; X). For

€ [1, +oc], the notation L1(I; X) stands for the set of measurable functions on I with values in
X, such that ¢t — || f(¢)||x belongs to L4(I). In particular, if I = [0,T] for T' € (0, +00), we denote
L%([0,T); X) by L%(X) for short. Usually, we denote P the Leray projector over divergence-free

vector fields defined as P % 7 4 V(—A)~!div, where I means the identity operator.

2. PRELIMINARIES

For the convenience of the reader, in what follows, we recall some basic facts on Littlewood-Paley
theory, one may check [6, 25] for more details.

Lemma 2.1. [Bernstein’s inequality] Let B be a ball and C a ring of R?. A constant C' exists so
that for any positive real number )\, any non negative integer k, any smooth homogeneous function
o of degree m, and any couple of real numbers (a, b) with b > a > 1, there hold

Supp @ C AB = sup [[0%]|p» < Ck+1)\k+2(%_%)Hu||La,

|lal=k

(2.1) Supp @ C AC = CTVFNF||ju| e < sup [|0%u||ze < CTFNF||ul| e,

|a|=k
Supp @ C AC = ||o(D)ul| s < ComA™ 2G| Lo
The proof of Theorem 1.1 requires a dyadic decomposition of the Fourier variables, which is
called the Littlewood-Paley decomposition. Let us briefly explain how it may be built in the case
x € R? (see e.g. [6]). Let ¢ be a smooth function Supported in the ring C def {¢ e R? 3 <l¢l < %}
and x (&) be a smooth function supported in the ball B {§ e R?, €] < 3} such that
ng gy =1 for £€#0 and (& +Z<p ) =1 for all £eR2.
JEZL q>0
Now, for u € §'(R?), we set
VgeZ, Apu=p2 D)u and Syu = Z Aju.
Jj<q-1

¢g>0, Aju=¢2 D)u, A_ju=x(D)u and Syu= Z Agu.
—1<q'<q-1

(2.2)

We have the formal decomposition
u:ZAqu, Vue S (RY)/PR? and u= Z Ayu, Yuc S (R?),
q€Z g=>—1

where P[R?] is the set of polynomials (see [23]). Moreover, the Littlewood-Paley decomposition

satisfies the property of almost orthogonality:
(2.3) AAu=0 if |k—q >2 and Ap(S, 1uAu) =0 if |k—q|>5,
. ArAqu=0 if |k—¢q|>2 and Ag(S;—1uldgu)=0 if |k—q|>5.

We recall now the definitions of nonhomogeneous and homogeneous Besov spaces from [25, 6].
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Definition 2.1 ([6]). Let s € R, 1 < p,r < 400, we set

def def

2712 ul v

27 Aqullzs

Julls, and full,

er(z)

The nonhomogeneous Besov space B;,,(R?) consists of those distributions u in S'(R?) such that

£r(Nu{-1})

|ulls, < 0o, and the homogeneous Besov space B;J(Rz) consists of those distributions u in S (R?)

such that ||ul|»s < oo, where S/ (R? def vy, € §'(R?)| imy_ 400 ||0(A D)t e = O for any 6 €
B h +
b7

D(R?)}.
Remark 2.1. (1) We point out that if s > 0 then B, = B;,T NLP and
lulls;, ~ llullgy |+ llullze-

(2) It is easy to verify that the homogeneous Besov space 3572(R2) (resp. 33,2(1128)) coincides
with the classical homogeneous Sobolev space H*(R?) (resp. H*(R?)) and Bgo’oo(RQ) coin-
citdes with the classical homogeneous Holder space C‘S(RQ) when s is not positive integer, in
case s is a nonnegative integer, B;,M(RQ) coincides with the classical homogeneous Zyg-
mund space C?(R?).

(3) Let s € R,1 < p,r < +oo, and u € S} (R?). Then u belongs to B;,T(RQ) if and only if
there exists some positive constant C' and some nonnegative sequence {c;,};ez such that
[{cjrHler =1 and V j € Z

(2.4) 1Asullis < Ces 27 ull 5,

Similarly, for u € S'(R?), u belongs to B;T(RQ) if and only if there holds

(2.5) 1Ajulle < Cejp 277 full gy -
Proposition 2.1 ([6]). The following properties hold.
(1) For s € R, 1 <p, r < 400, the normed space (Bj .(R?), || - IBs,) is complete. When s < %
and 1 <r < +o0, or s < % and r =1, the normed space (B;’T(Rz), Il - HB;,,T) is complete.

(2) Sobolev embeddings: if 1 < p; <pas < 400, 1 <r; <ry <400, s €R, and 51 < s2, then we
. Ls—2(L_ 1) o(L 1)

have B{Zl,m (R2) SN B;%mm P2 (RQ), B1§1,7"1 (R2) SN B;2,7"2p1 P2 (RQ); and B;f,h — BE,H'

(3) A constant C' exists which satisfies the following properties. If s1 and sy are real numbers

such that s1 < sz, 0 € (0,1), 1 < p, r < 400, then we have

0 —0
(2.6) lull gosy +1-0105 < el Nl ez and

¢ 1 1 0 1-6
(2.7) el gosyra=ores < ———(G + ) llullzy vl -

These assertions are true for homogeneous Besov spaces B;ﬂ,.
(4) Let m € R and f be a S™-multiplier (that is, f : R> — R is smooth and satisfies that for
all multi-index s, there exists a constant Cy such that V&€ € R?, [0° f(€)] < Cs(1+ €)™ 1l.)
Then for all s € R and 1 < p, r < 400, the operator f(D) in continuous from By, to
By,
In the rest of the paper, we shall frequently use Bony’s decomposition [8] in both the homogeneous
and the inhomogeneous context. The homogeneous Bony’s decomposition reads

(2.8) wv = Tyv + Tou = Tyv + Tyu + R(u,v),
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where

T,v def Z S’q_lquv, Tiu def Z Aqu5q+2v R(u,v) def Z Aqquv with Aqv dlef Z Aq/v,
qEZL qQEL qEL l¢'—q|<1

and the inhomogeneous Bony’s decomposition can be defined in a similar manner.

The main continuity properties of the paraproduct are described below, which provides us with
product laws in inhomogeneous Besov spaces. These assertions hold also true in the homogeneous
Besov spaces.

Proposition 2.2 ([6]). (1) A constant C exists which satisfies the following inequalities. For
seR,t<0,1<p,r ry, rg < 4oo, we have

ITuvllB;, < C¥HJullzlvlls;,

Clstti+1 1 def 11
HTuUHB;j;f < THUHBt vl B3 with  — = min{1, " + E}'

p,T2

<

(2) A constant C' exists which satisfies the following mequalz’ties Let (81,32) be in R? and

(p1,p2,71,72) be in [1,00]%. Assume that 1 efi + = and 1 def 1 —|— ~ < 1. Then we have
C's1ts2+1
IR 0) g es € Nl ol 3 51+ 52 >0,
IR, 0)lpy , < Cllullgs, Mvllgy,, 4 r=1ands +s2=0.

In order to obtain a better description of the regularizing effect of the transport-diffusion equa-
tion, we will use Chemin-Lerner type spaces from [9, 10].

Definition 2.2. Let sc¢ R, 1 <7, \,p < 400, and T > 0. we set

def def

and

218l 2y

’2qSHA U”H (LP)

lellzy ;) = lellzy ) =

r(NU{~1}) (@)

For s € R, we define E{}(Bs def

{ue S((0,7) xR | |lulgy g, , < o0} and L)(B;, ) Ly e
S'((0,T) x R?) | Hu”i%(]égm) < 00, limj_, o, Sju =0 in L%(LOO(RQ))}.

In the particular case when p = r = 2, we denote L%(BSQ) (resp. LE\F(BSQ)) by Ly.(H®) (resp.
L) (H?).
Remark 2.2. It is easy to observe that for 6 € [0, 1], we have

~. . 1-60
(29) HUHL%(B& = HUH~A1 S}T)HU’ E;P(B;)?r)
with % = )% + % and s = 0s1 + (1 — 0)so. Moreover, Minkowski inequality implies that
HUHE;(Bgm) < ||UHL%(B;7T) if A<r and H“”L}(B;,T) < HUHE%(B;T) if <A

Let’s now recall the following commutator’s estimate which will be frequently used throughout
the succeeding sections.

Lemma 2.2 (Commutator estimate, Lemma 1 in [24], Lemma 2.97 in [6]). Let (p,q,7) € [1,00]3,
0 be a C function on RY such that (1 +|-|)0 € L'. There exists a constant C such that for any
Lipschitz function a with gradient in LP and any function b in L, we have, for any positive \,

(2.10) [[6(A'D), alb||r < CX Y| Val relbllpa with pt+q¢ =71
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Almost all the estimates of the nonlinear terms in the paper are based on the following com-
mutator estimates, which proofs rely on Bony’s decomposition (2.8) and (2.10). Although their
proofs are similar to the ones used in previous papers, some new observations and their applications
play a crucial role to deal with the functions in critical spaces. So we prove them for the sake of
self-containedness.

Lemma 2.3. (1) Let a € (—1,1), (p,7) € [1,00%, u € BO‘ +(R?) and Vv € L®(R?) with
dive =0. Then ¥V q € Z, there holds

(2.11) Ag v VIl S cqr2™*([Vollze flullgo -

~

(2) Letu e B%’l(]Rz) and Vv € Bgo’l(]Rz) with dive = 0. Then YV q € Z, there holds
(2.12) [Ag.0 - Viulze $ car2 Il g0 Nl

(3) Letr=1o0r2,ue Bir(RQ) with divu = 0. Then ¥V q € Z, there holds
(2.13) (&g, - Vullz2 eyl ull el

(4) Let u € By, L(R?) and v € B;O71(R2) with divv = 0. Then ¥Vq € NU{—1}, there holds
(2.14) 1A v - VIullz2 S cqo020llpy llullp;1 -

(5) Let u € BSJ(RQ), a € Béo7oo(R2) and V a € L®(R?). Then V¥ q € NU {~1}, there holds
(2.15) e, AqlVull L2 S cqoo(I[Vallzee +llallpy, )llull g -

(6) Let Vu € H%(Rz) and a € B;o,l(R2>' Then ¥ q € NU{—1}, there holds
(2.16) [la, Al V ul[ 12 S cq127(llall o, IV ull2 + HaHBiIHWHH%)-

(7) Lete € (0,1), f € L*(R?) and a € Bg 1(}R?). Then ¥ q € Z, there holds
(2.17) [las Al 12 S Cq,lHCLHBEJHfHLQ

(8) Lete € (0,1), f € By1(R?) and a € B;T(R%. Then ¥ q € 7, there holds
(2.18) I[a, Aglf |2 S can(IV all e[ fllpy1 + HaHBlzTHfHB;;)

Proof. Thanks to Bony’s decomposition (2.8), we have
[Ag,v-Viu=A,(v-Vu) —v-VAu
= Ag(Ty505u) + Ag(To,uv?) + ARV, 9ju) — (T,s AgOju + T’Aqajuvj),

which along with the divergence free condition of v yields

(219) [Aq, (VN V]U = Aq (@R(?ﬂ, U)) + Aq (Tajuvj) T,A dju [Aqa Tv] 8 ju d_6f ZRZ

For R} = A, (0;R(vI,u)) = D k>q-3 A,0;(ArvI Aju), it follows from Lemma 2.1 that

(2.20) IRyl $27 > A/ Agulize $27 ) || Agul| o || Agv? || os.
k>3 k>q-3
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Hence, we obtain from (2.4) that, for a > —1,
IRellze S 29V ol Y 1Akullr2™* S Cqr2” V0l [poe[[ul gy -
k>q—3

Notice that for a < 1, we get from (2.4) that

191 Vulle S > 21 Asullzr < Ck,r2k(1_a)”uHBg’Ta

~ ~

0<k—2
then for Rg = Aq (Tajuvj) = Z|q_k|§4 Aq(Sk_lajuAkvj), we obtain
(2.21) 1R2 S 3 ISicrdjullr| A lm $ cqr2 Vol ull g
lg—k|<4
Whereas for a = 1, we deduce from ||Sy,_1 V2 < D e<k2 2| Agul| 2 < ||u||B%’lthat
IR22 € 3 ISkcdpul izl A o S equ2 Vol llulls -
lg—k|<4 ’ ’
Thanks to the properties to the support of Fourier transform to SkJrgAqBju, for ”Rg = —T’A auvj =
. . . . q%y
— Zkzqug Si+2040juA 07, one obtains that for o« € R
. L , ke
IR e S 1AD5ulle Y Ak [l S [ Aqullze Y 297" ALVl
k>q-3 k>q-3
< g2 ul gy [Vl

For the last term in (2.19), owing to the properties of spectral localization of the Littlewood-Paley
decomposition, we have

Ry =[Ag, Tuldju= Y [Ag Sk-1v/|Ardju.
|k—q|<4
Applying Lemma 2.2 leads to
1Ag, Sk—1v1AkOjull o < 27|V Syl L 105 Akull Lo S 257 V| Lo | Agul| o

~ ~

We thus get, for a € R,
HRgHLP S Z ||[Aq7 Sk—lvj]Akaju”LP
|k—q|<4

S IVl e Z [Agullr S CquqO‘IIUHBgTIIWIILOO-
k—q|<4 ’

(2.22)

Therefore, owing to ngl — L, we arrive at (2.11) and (2.12).
Similarly, in order to prove (2.13), we shall use the decomposition (2.19) with v = u. We first

apply Lemma 2.1 to Rc11 =D k>3 Aqaj(AkujAku) to get
1RG22 S22 D A Agullr S 2% > | Agul 2| Al 2,
k>q—3 k>q—3

which follows

IRz S 22NV ullzllullpy Y 27 erack, S e
" k>q-3

1V ul g2l
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Thanks to Lemma 2.1 again, one has
IR S27 Y [1Sk—10judpud || 1
lg—k|<4
$20 Y 1Sk10ull e ll Ak | e S eIV ull 2 lull gy -
lq—k|<4 ’
For Rg = — Zkzq—:s Sk+2Aq8juAkuj, we find

1RGNz S 1Ag05ullree > 1Ak |2 S 291 AgVullpellull gy Y 2 Fen,
k>q—3 " k>q-3

< ol Vulz2llullsy car S carllVullzalul gy -

While for R;‘ = [Aq,ij]Bju = Z\k7q|§4[Aq7 Sk,lvj]Akaju, we deduce from Lemma 2.2 that
1Ag, Sk—1u7]Ardjull 2 < 279V Skoru| oe |05 A 2.
Remark that

IVSk-rullee S > IVAwllz~ $ > 2VAul 2 S [ Vull 222,
I<k—2 <k—2

we thus get
IRgllze S llull gy [Vl 227 2 epack, S carl|Vul2llullpy -
2,7 2,7
|k—q|<4

Hence, we prove (2.13).
Next, due to the inhomogeneous Bony’s decomposition (2.8), we may find the inhomogeneous
version of (2.19). In this case, similar to (2.20), one can see

1RG22 527 Y [ Agull 2] Ake? || o
k>q—3

< lullgr lollsr 20 S choocin S coo2lollp Nulls
| P |

For R2, we get from the proof of (2.21) that
RG2S cqoa2?Vulloe lull g1 S €qo02Ivllpr,  llull gy -
And for 722 = — Zkzqu Sk+28g0julgv?, we prove
j -k
1RGNz S HADjullre Y AW ||z S 2eqecllullgs D 20  epallvllpy
k>q—3 - k>¢-3
S Cq,oo2qHU||BC1)o‘1 HUHBQ;
Finally, similar to the proof of (2.22), we obtain
4
IRqllze S cqoo2?llvlisy,  Nlullp; -
Hence, we prove (2.14).
Thanks to Bony’s decomposition (2.8) in the inhomogeneous context again, we write
(2.23) [a, Ag]Vu = Ay R(a, Vu) + Ay Tyua — T vy @ — [Ta; Ag]Vu.
Whereas applying Lemma 2.1 gives

(2.24) |AgR(a, Vu)|[r2 < Z |Aal|zoo || AL Val| 2,
k>q—3
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which follows that
1AR(a, V)2 S D 2% Agallze~ || Agul| 2

k>q—3

<llallsy, ullng, 3 ekt S cuocllallsylullsg,.
k>q—3

In a similar manner, for T’Aqvua = Zkzqu Si+28¢VulAya, we prove
ITA, vuallz S D 11Skr28gVull 2| Arall e S 18gVullz: Y | Agal|ze
k>q—3 k>q—3

—k
Slallsy, lullsg 271 D 27 oo S cqallallpy,llullpg -
k>q—3

Due to Lemma 2.1, we have
1Sk Vulle £ 3 208wz < Jullpg, 3 Pers S ullpg, 2¥nn,
(<k—2 (<k—2
which leads to

IATouat)llzz S > I Akal Lool|Se—1Vul| 2
lg—k|<4

< lallsy, _llullsg, S exoocks S cqrllallz . lullgg, -
lg—Fk|<4

Since |V Sk—1al|r~ < ||Val e, we deduce from Lemma 2.2 that

1A TVulz S S 27998k 1all i [VARull2 S g
|k—q|<4

Val o ful g .

As a consequence, we obtain (2.15).
In order to prove (2.16), we will use the decomposition (2.23) of the term [a, A;] Vu again. We
first apply (2.24) to get

1AgR(a, V)l 2 S llallps IV ullzz Y 2 Feraene S 27 %cqullall gy 1V ull .
k>q—3
For T’Aqvua = Zkzq—:s Si+28¢Vulja, we prove
ITA, vuallz S D ISkr28gVull 2| Agallze S IVullz Y | Agallze
k>q—3 k>q—3
SIVallzllallp | Y- 27 e S 27 %cqllall g, IVull 2.
k>q 3
Note that ||Sg_1Vul|r2z < ||V ulr2, it follows from Lemma 2.1 that
1A Twua®l2 S D Akalze|Sk-1Vul 2
lg—k|<4
Slallgy IVullz Y 27 ek S ega2lall gy IV ull 2.
lg—k|<4
Finally, thanks to

IVSirall= S S 2 Al e S llal
I<k—2

Z 05122 <HaH 3 ck’12%k,

3
00,1 p<f—2
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we obtain from Lemma 2.2 that

1A TalVulre Y 279 VSe_ial oo ||V Ay 12
|k—q|<4

Slall g 1ull,y D 2 %kcks S 2 %qallal y IVull,y.
oo, \k—q|§4 oo,1

Therefore, we get (2.16).
Toward (2.17), we will use the homogeneous version of the decomposition (2.23), that is,

(2.25) la,Ag]f = Ay R(a, f) + Ay Tya — Ty ;0 [Tu, Af.
Thanks to Lemma 2.1, we find

IAqR(a, fllzz $29° > [Avalpfll 2. 5 2% > lAkall, 2 1AL 2,
k>q—3 k>q—3

which implies

1A, R(a, N)llze S 2%lall s 11£1]z2 ka2 e S gl
2

allgs £z
21

et E>q—3
In a similar manner, for T/Aqfa = Zkzq—s Sk+2Aquka7 we prove
(2.26) IT}, ollz2 < 2% > 1Sk+28qf Akall, 2 S 1A S 2 > Al 2,
k>q—3 k>q—3

which follows

173, s0llze S 2% Nall g [1£llz2cqz Y a2 ™™ Segalallg Al e
57 e

k>q—3 €
Due to Lemma 2.1, we deduce from ||Sk_1f|lz2 < |Ifl 2 that

1A Trallrz S > [|Akallzoe |Se—1 £l 12
lg—k|<4

re i
Sl Y 2%IAwall 2 S cgnllflizllallp -
lq—k|<4 =
Finally notice that
IVSkrallze £ )7 [IVA@lze £ Y 2049 Aral 2 S llallpy Y 2%er < llallpy 2%k
0<k—2 0<k—2 el y<k—2 et
one gets from Lemma 2.2 that

I[Ag Tl fllzz S > 279V Skorallzo | Ak f|l 2
|k—q|<4

S llezllall g > 20 S cqallfllzzllall o
&1 Jk—q|<4 ot

As a consequence, we obtain (2.17).
Along the same line as in the proof of (2.17), for the decomposition (2.25), we first deduce from
Lemma 2.1 that
1Ag R(a, ) + Ay Trall2 $2% ) 1 AvaSkeafll, 2. 2% Y IAxall 2 | Sesafllze,

I+e
k>q—3 k>q—3
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which along with [[Sks2flz2 S Spepar 1Aef Iz S 115128 ers implies

. . .
12q Bla, f) + g Tyallre S 2% lall gyl £l 5 Y a2 Fae S cgrllallpgrell Fll g
<  k2g-3 = ’
Similarly, for T’Aqfa =D kg2 Skr2A,fAra, we obtain from (2.26) that
—k
1T}, sallze S 20 Nall el fll sracae D era2 ¥ S eqallall e | fll ;1
= T k>g-3 = ’

For [Aq, T,]f, thanks to Lemma 2.2 again, we prove
1A Tulfllzz S D 27UV Skorallzes||Arfll 2

lk—q|<4
k—
SIVallzllfllgs Y 287 % S cqallVallze || fll g 1
" lk—ql<4 ’
Hence, we obtain (2.18).
This achieves the proof of Lemma 2.3. (]

Remark 2.3. By virtue of ‘[24], we may obtain that all the assertions in Lemma 2.3 hold true if
the dyadic operator A, (or Ay) is replaced by o(D)A, (or o(D)A,) with any zero-order multiplier
o(D).

Applying Lemma 2.3 to the transport equation, we have

Proposition 2.3. Let k € Z, o € [0,1], (p,7) € [1,00]%, ag € BS,.(R?), Vu € LL(BY ;(R?)) with
div u = 0, and the function a € C([0,T; BﬁT(RZ))) solves

. — 2
(2.27) { da+u-Va=0, V(tz)e[0,T] xR

ali=o = ap, V€ R2
Then there holds that for ¥Vt € (0,T)]

1
(2.28) Jla— SkaHEgO(BgT) = (E quaHAanHTLP) + ||a0||Bgr(e IVull 1 poy 1) if aclol),
7 >k 7

and

(2.29) la = Skallze gy ) < > 2 Agaoll 2 + flaol 5y (e
q2k

CHVU“Ltl(B(o)O D 1)
Proof. Motivated by [2], we first apply A, to (2.27) to yield
Ao +u-VAa=[u-V,AJa
From the maximum principle we deduce
t
(2.30) [1Aqga(t)l[zr < [[Aqaollze +/ Ifu -V, Aglal|zr (7) dr.
0

For o € [0,1), thanks to (2.11), we have
IV, Aglallze < cqa2” ™| Vull = lal gg .

~

from this and (2.30), one has

t
o)y, < laollgg, +C [ IVulilla(r)lsy dr
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Gronwall’s inequality yields
(2:31) la(®)ll g, < Clacllzy

from which, we use (2.30) again to deduce that

C”VUHL%(LOO)
)

t
. . oIV oo
29| Aqa()] e 10y S2qa||Aqa0\Lp+C’ao||Bg,r/0 qur (P Vu(7) | oo e T30 i

Then, taking the ¢ norm in terms of ¢ € {¢ > k} leads to
1 t
lo = Skallp gy < (D21 Agaollzs ) + llaoll g /0 CU'(1)eV @ dr,
q>k

which implies (2.28). For a = 1, thanks to (2.12), we have

I[w- V. Aglallze S cqn27"IVull g llall 3 -
Hence,repeat the above argument, we may get (2.29). d
To prove the uniqueness part of Theorem 1.1, we need the following Propositions.

Proposition 2.4. Let ug € Biio(RZ) and v be a divergence free vector field satisfying v €
Lip(B, ). Let f € E%F(B_l ), and a € E%O(Bgl) with 1 +a > c¢; > 0 for some positive con-

2,00 = ~
stant ¢1. Assume that u € LS_’FO(BQ_;) N L%“(B%,oo) and VII € L%F(Biio), which solves
Ou+v-Vu—(1+a)(Au—VID) = f, (t,z) € Ry xR?
(2.32) divu = 0,
U‘t:() = Uup.

Then there holds:

2
C(T+T||VaHZ%Q(B% 1>+”””L1T<Béo,1))

(2.33) HUHL%O(Bz_,io) + HuHZlT(B%,oo) <Ce
x ol + 1715y 551 + ol ) IV Tz ;1) -
Proof. Let P def + V(—A)~1div be the Leray projection operator. Applying AP to (2.32), then

a standard commutator process gives
- OAgqu+ (v-V)Aqu — div((1 + a)VAgu) = [v, AJP] - Vu — AJP(Va - Vu)
(2:34) + AJP(Ty,Il) — APTora + div( [AqIP’, a] Vu) + A Pf.

Thanks to the fact that divu = dive = 0 and 1 +a > ¢;, we get by taking the L? inner product of
(2.34) with Agu that

d

L aquls - / div((1 4 a)VA,u) A, udz
R2

S 1Agullza (e AP - Vull 2 + 1AP(Va- Vu)| 2 + 27| [a, AP] Va2
+ 1AP(Teall) 12 + | A PTonall 2 + | AP ll52 ).

We get, by using integration by parts and Lemma A.5 of [11], that

22| Aqulls, Vg 20,

_ /R2 div((1 + a)VAu)Ajudx = /R?(l +a)|A,Vul* dz 2 { 0. if q——1.
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This leads to
1Aqull Lo (22) + 2271 g>0l| Aqull 1 12y S [1Aquoll L2
(2.35) + /Ot(n[v, AGP] - Va2 + [|AP(Va - V)| g2 + 29| [AgP, a] V| 12

+ 1 AP(ToaIDl| 2 + [ AgPTrall s + [ AP =) dt'

Thanks to (2.14) and (2.15) (up to a zero-order multiplier P in terms of A,), we deduce from
divv = 0 that

T
—q . < _
(2.36) sup 277 APl Full g gy 5 [ ol ol
and
(2.37) sup AP, a] Vull 12y S (IVallzge (o) + lallLge sy, ) lull sy -

On the other hand, it follows from Bony’s decomposition that
JAP(Va- Tl z2) S 18PTe o V)l 1) + 18P V)l 1)
(238) < Z 19k-1V all g (o) [ ARV U L1 (£2) 4 2 Z 1Sk42V ullL1 (22)[|AkVal oo (r2)-
|k—q|<4 k>q—3
Notice that [|Sk—1V al|zee(re) S |V all () and
HSkJrZVU”LlT(m) S Z HAIZVUHHT(L?) S Hvu”le(Bﬁ)chk,h
0<k+1

we then obtain from (2.38) that

[1AP(Va - Vu)llps (2

SIValgre) D 18Vullpywn + 2V ulzy g1y Y 2enlArVallg )
|k—q|<4 " k>q-3

<2V ull g, 5y IV allpzmycar + Valliem ) 3 o)
' k>q—3

(2.39)

S 2V UHFT(B;%)HVCLHL%O(B;J)-
For APTqa = AP Zkzq{,) Sr1oVIIALa, we first split it into three parts
Aq]P’T/VHa :1_1§q§2AqP(51VHA_1a) + 1_1§q§2AqPZ Sk1oVIIALa
k>0

+1530P Y SpaVIIAa.
k>q—3

Owing to Lemma 2.1, one can see

IAPTEnall L (12) S 1-1<q<2|S1VIIA1a] 11 (12)

+112g<22? Y [[SkraVIIALall 1 1) + 270023 Y [|SkraVITAal| 11 11
k>0 k>q—3

S 1oi<g<e <HSlVH”L1T(L2) 1A vall e (roey + [Sk42 VI L1 (12 \AWHL;O(B))
k>0

F 20 S IS0sa VT s (o) | Asall e g
k>q—3

(2.40)
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Thanks to Lemma 2.1 again, we deduce that

||Sk+2VH||L1T(L2) S sz:l ||A£VH||L§,(L2) S ||VHHE1T(B;7;)2kck,oo,
<k+

which along with (2.40) implies
1APTonal Ly (12) S1-1<0<2 VI gy 551 (HQHL%O(L"O) +llallzee sy ) kzck,l)
>0

(241) + 200 [ VI o iz iy ) D cha
k>q—3
<91 - -
SPUIVIzy (571 ol 25 3.,
Similarly, for A PTy.II = AqPZ\k—q|§4 Sp_1VaAill = AqPZ|k—q\§4,k20 Sp_1VaArll, we di-
rectly deduce from [|Sx—1Val[peo(r2) < [[Val[re(z2) that

IAPTwalll s oy S27 3 1Sec1 VadIT s g
|k—q|<4, k>0

(2.42) S 2 Z HSkflvaHL%o(L?)HAkHHL%ﬂ(LQ)
|[k—q|<4, k>0

—k
S2|Valpany Y. 27 IARVI gy o) S 20V gy s Nl e -
lk—q|<4,k>0 ’ ’

Plugging (2.36)-(2.42) into (2.35), we arrive at

T
ol oy + Wl oy S Mol +18-ruliyqa + [ Ol IOl at
19 alle oy Ml o9, + ol zze gy 19Ty ) + 1 g

Thanks to (2.5) and the interpolation inequality (2.7), we have

T 1 1
P A L P 2 PR Y N 1
Hence, we obtain

T
oy + Wl oy S ol + [ @l (14 o0l

1

+ HvQHZ%O(B%J)”uH%lT(B;io)HUH%IT(B;Oo) + HGHE%O(B%J)|IVH“E1T(B£;O) + Hf”i%ﬂ(BQ_éo)

Thanks to Young’s inequality, we deduce

T
ol sty + oy oy S ool + [ el (1 @) )
2
IV allfe iy el sy + Mol ze oy ) IV L 51 + IF 112 (551 )0

which along with Gronwall’s inequality yields (2.33). This completes the proof of the proposition.
O

Proposition 2.5. Assume 0 <b<b. Leta € B%’l(]Rz) such that 0 <b<1+a<b, and

(2.43) |la — Ska||321 ¢
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for some sufficiently small positive constant ¢ and some integer k € N. Let I € B2,oo(R2) and
def

VII = Hy(F) € B 3 (R?) solves

(2.44) div ((1 + a)VII) = div F.

Then there holds

(2.45) 19T 51 < (4 2 allgo, (L + lallpo ) (1] oz + ]l div 2 ).

Proof. We first deduce from (2.43) and b < 1 + a that

1+Spa=14a+ (Spa—a)>

N IS

Motivated by [2, 14], we shall use a duality argument to prove (2.45). For the sake of simplicity,
we just prove (2.45) for sufficiently smooth function F'. In order to make the following computation
rigorous, one has to use a density argument, which we omit here.

For this, we first estimate ||VII| gy under the assumption that F' € B%,l(]R2). Indeed, we write

(2.44) as
div[(1 + Sga)VII] = div F + div [(Sga — a)VII],
applying A, to the above equation gives
div [(1 + Sgpa) A VI = div A, F + div Ay[(Ska — a)VII] + div ([Ska, A,]VIIT).

Taking the L? inner product of this equation with A,II, we obtain from (2.16) that

19I55, S 11(Ska— )Vl gy, + [ Fllgg, + 3 2[Sa, AV,

q=—1
S i algg IV, + 1Py, + (ka9 100+ WSl 1903

2
Applying the classical elliptic estimate to (2.44), we get |VII|| ;2 < ||F||r2. Due to Lemma 2.1, we
get

ISkallp S D 2 Awlze Sllallgo | D 2% S 2 allp
T e<k—1 U <k—1 ’

and similar inequality ||Skal| 1 S Q%HGHBO g
Boo,l o
While by the definition of the Besov space, one can see ||Sga — a||B% s || Ska — ‘IHB; g for k
’ 1 !
large. This, together with (2.43) and the interpolation inequality ||VH||H% SAvhl g, vz, S
21

1 1
VT2 1772, leads to

k 1 3 3
Iy, S 1Fllny, + Flalag, 1Pz + 2 allpy VT, 1FIE).
Hence, applying Young’s inequality yields
k
(2.46) VIl gy, S (1+2%allgo, (1 + llallge, ))IFllgy, -
Now we use a duality argument (see Corollary 6.2.8 in [7]) to estimate ||VII|| ;1 in the case when

F € B; ! (R?). Notice that

(2.47) HVH||B2—1 = sup (g, VII)= sup (—/Hdivgd;r),

<1 <1
|I9HB%71_ HgllBé,l_
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where (g, VII) denotes the duality bracket between &’ (R?) and S(R?). Whereas (2.46) ensures
that for any g € B%J(RQ)

div ((1 4+ a)Vhy) =divg
has a unique solution Vh, € B%yl(Rg) satisfying
(2.49) [Vhllsy, < (+2lallg (14 llalls Dlals .
which along with (2.47) yields
HVHHB;’;} = sup —(ILdiv((14+a)Vhy))= sup ((1+a)VII,Vhy)

lgllpy =<1 lgllpy =<1

= sup —(hg,div((1+a)VI))= sup —(divF, hy)
lgllpy <1 lgll gy <1

= sup —<divF, Z Aghg>.
”gIIB% 1§1 >-1

Hence, it follows that

VI g1 = sup  —(divF,A_ihg) + sup —(divF, Y Achy)

<1 <1
IIQHB%J_ IIQIIB%,I_ >0
= sup <F, VA,lhg> + sup —<diVF, Z Aghg>.
lgllpy <1 lgllpy <1 >0

Whence thanks to (2.48), we obtain

IVl S sup_|Fls IVA-hgllgg, +  sup_[ldivFllz |3 Achllsg,

”.QHBélgl Hg|B%1§ >0

S sup |[Flpz2 [Vhgllpy +  sup |[divFlg-2 [Vhglp;
lgllpy <1 , b gl <1 ’ :

k .
S (1 2l (L lallpg, ) (1Pl + div Pl 2 ),
which completes the proof of this proposition. O

In order to get the uniqueness of the solution in the critical case in Theorem 1.1, we need to
recall the following Osgood’s lemma [18].

Lemma 2.4 ([18], Osgood’s lemma). Let f > 0 be a measurable function, v be a locally integrable
function and p be a positive, continuous and nondecreasing function which verifies the following

condition
/1 dr n
—— = +o0.
o H(r)
Let also a be a positive real number and let f satisfy the inequality

[ <a+ /0 A()(f(s)) ds.

Then if a is equal to zero, the function f vanishes. If a is not zero, then we have

dr
p(r)’

t 1
~M(f(2) + M(a) < /0 As)ds it M) = [
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3. Tue L'([0,T]; B,) ESTIMATE FOR THE VELOCITY FIELD

In this section, we want to get, at least in the small time interval, the L!([0,T7; Bgl) estimate
for the velocity field, which plays a crucial role in the study of the uniqueness of the solution to
(1.1). For this, we first investigate some a priori estimates about the basic energy and the pressure.

Proposition 3.1. Let ¢ € (0,1), ap :=py' — 1 € Bgo’l N B3 OO(R2) and ug € L*(R?), and (1.5)

holds. Let (p,u, VII) be a smooth enough solution of (1.1) on [0, T, then for any t €]0,T*[, there
hold that

(3.1) VBl e 1) + 20Vl 2210 < llv/Potol2,

and

A C||Vul| o0
IV 2y < (0 + MY (1B gaollio + Mllaollgo (5 = 1)) | Aul gy o)
q>k

(3.2)
Cl|Vu 0o
+ Cy (Vi 4 VIO 4 D)

for any positive constant .

Proof. We first get, by using standard energy estimate to (1.2), that

1d
5@”\@“”%2 +||Vull7. =0,

which immediately follows (3.1).
On the other hand, let a def p~! —1, the system (1.2) can be equivalently reformulated as

owa+u-Va=0, (t,x) € RT x R?
ou+ (u-V)u— (14 a)(Au— VII) =0,
divu = 0,

(@, uo)|t=0 = (ao, uo).

(3.3)

Applying the maximum principle and Lemma 2.3 to the first equation in (3.3) gives rise to

ClIVul|
(3.4) la@llze < llaollre and  Jlall oy < llaollgg e Heiae,
Chkad e

Applying the div operator to the momentum equation of (3.3) yields that
(3.5) div((1 + a)VII) = div(aAu) — div((u - V)u),
for some large enough integer k& we shall rewrite the above equality as
div((1 + a)VI) = div((a — Sga)Au) + div(SgaAu) — div((u - V)u)
=div((a — S’ka)Au) + TauVSka + Tgg, o Au+ div(R(Ska, Au)) —div((u- V)u).

By taking L? inner product of the above equation with II, we get from the fact 14+a = % > ﬁ that

1
p
1 . .

IV < VT 22 (H(a — Ska)Aull 2 + [[TauVSkal -1 + Ty, o Aull -1

+ IR(Ska, Aw)lga + l[(u - V)ullyz ).
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Thanks to product laws in Besov spaces Proposition (2.2), one can see
I(a = Spa)Aul| 2 < [la — Sgal || Aul 2,
ITauVSkallg-1 + |1 Tgg,  Aullg-1 S IVSkallze< |Aull -1 S [V Skall L [Vul| 2,

IR(Ska, Au)ll 2 < [|R(Ska, Au)l|ge S 1Skall gt (IVullzz < 2% all g 1Vullzz,
5= £,00 £,00

1 1
[(u-V)ull2 S ullpal[Vullps S lullf2 1 Vull 2 || Aul 7.
from which and (3.6), we infer
IVIT 2 <Mlla — Syallzo||Aull g2 + C 2|l oo [ V] 2
(3.7) 1 1
+C2allge Vullre + Cllull 2 Vul 2| Aul ..

Thus by Young’s inequality, we deduce from (3.4) that for any positive constant n

IV 11 12y <(Mlla = Sgall pee(zoey + 1) |Aull g1 z2) + Co VE2¥ lao| oo |Vl 1212

(3.8) Cl[Vul 1

+ Oy Vi2llaollgy [IVullzziae U+ Gyl e IV ellzz -

Thanks to Proposition 2.3, we have

' ; A ClIVall L1 poo
(3.9)  lla = SkallLgre) < lla = Skallgego ) < Z 1Agaoll = + llaoll g0 (e Liee) 1),
’ >k ’
Plugging (3.9) into (3.8) ensures (3.2). This completes the proof of Proposition 3.1. O

With Proposition 3.1 in hand, we are in a position to prove the following proposition about the
estimate ||uHLt1(B§71).
Proposition 3.2. Let € € (0,1), up € Bgl and ag € BE ,- Let (a,u, VII) be a smooth enough

solution of (3.3) on [0, T*[, then there is small positive time Ty < T* such that, for allt < Ty, there
holds

(3.10) lullgysz ) + 1Vullzz S Do (1) [Ajuolle + Ve
JEZ
Proof. Let P def y + V(—A)~1div be the Leray projection operator. We get, by first dividing the
momentum equation of (1.2) by p and then applying the resulting equation by the operator P, that
Ou+P(u-Vu) —P(p~ ! (Au — VII)) = 0.
Applying Aj to the above equation and using a standard commutator’s process, we write
(3.11) PO Aju+ pu - VAju — AAju = —p[AjP,u - V]u + p[A;P, p~](Au — VII).
Taking L? inner product of (3.11) with Aju, we obtain
1d

(3.12) 2dt Jp

< 1Azullz2 (oA, u- Vil 2 + o[AsP, 57 (Au = VID)|2).

plAjul? dx — /R2 AAju- Ajude

We get, by using integration by parts and Lemma 2.1, that

— | AAju-Ajudzs :/ VAul*dr > 22| Ajul|7..
RQ RQ
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Thus, we deduce from (3.12) that

d . ) .

%H\/EAJ‘UI@ +2e2% || \/pAjul 72

S oA jull 2 (I[AP, u - V]ul g2 + [[[A;P, p~ '] (Au = VIT) || 22),
where c = ¢ / M. This gives rise to

. _92j .
IVBAut) 2 S e lly/poAsuoll 2

(3.13) b ,
n / e~ (||[AR, u - Vlullge + (A, o) (A — VIT) | 2 ) (#) '
0

As a consequence, by virtue of Definition 2.2, we infer

lull gz ,y S D (1—e ) 1 Ajuollze + Y AP w- Viul 2
(3 14) JEZ JEZ
+ZHA]P>[) AU_VH)HLlLQ
JEZ

In what follows, we shall deal with term by term the right-hand side of (3.14). Thanks to (2.13),
we first obtain

E H[A P C]UHLl (L2) S S C“HL2 L2)||U”L2 Bl,)
( 1)
jez

from this, we use the interpolation inequality (2.6), ||u||L§(Bl s ||uHD,o(L2 HuHL1 52,) and Young’s

inequality to find

(3.15) D AP, u- Vull g2y < CnHUHL;’"(L?)||vu”if(L2) +allullpyss )
jez

for any positive constant 7.
While thanks to (2.17), we deduce that

(3.16) D AR, p VI 12 S HaHLoo HVH”Ll(L2
JEZ

On the other hand, note that
(3.17) [A;P, p~Au = [A;P, a]Au = [A;P,a — Sra]Au + [A;P, Spa] Au.
Using (2.17) again, we obtain

(3.18) > AP, a — SalAull 12 S lla — SkaHLoo : |]Au||L1 L2)-
JEZ

For [A,P, Sya]Au, we deduce from (2.18) that

> |[[A;P, Skal Au||L1 1 SV Skall pee (o) lull sy ) + ||Ska||Loo Bl+€)||vu||L1 12)
JEZ
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1 1
which along with the interpolation inequality (2.6), HuHB% . S lull72l|A w72, and Young’s inequal-
ity leads to ’

Z H (AP, Ska]A“HLg(p)

JEZ
. 1 1 .
< CUIV Syallcgmqooe) VIl F oy 18 01y gy + 1Skl gy VA wllzz0)

<A ullgyay + o 19 Sealldpuo lull ez + C VEISkall e ey IV e

for any positive constant ~.
Hence, due to Lemma 2.1, one has

ZH (AP, SpalAul| 1 2y <A ull 12y + Oyt 2% lal|Fge o) lull o (r2)
(3.19) Jez
+C \/izk”aHL?o(B;l) IV ll 2 r2)-

Combining (3.18), (3.19) with (3.17) gives rise to

> AR, p~ AUHLl 2y S (Y +Clla— SkaHLm DA L1 r2)
(3.20)  IcL o
+ Cyt2°%|al|F oo |l oo (22) + C\/ZQICHGHLgo(BE2 1)HVUHL$(L2)-

Substituting (3.15), (3.16) and (3.20) into (3.14), and taking 1 and v small enough, we obtain

—ct22\ || A
el <€ 30— ) WA swolza + OVl
Jje
(3.21) +Cllolaqy ) Iy + Cllo = Sualzz sy 1 Aulgen
(B% )

+o\f2k(\f+ lallzz s ))-

Thanks to (2.31) and (2.28), we get

ClIVull 100

ol Zee 35 ot lallzee (g ) S e )
2,

(3.22) ClIVully

la = Skall g s, ) < 32 1Aqa0l 2 Hlaollgy (7O~ ),

€’ q>k
Therefore, thanks to (3.2) and (3.22), we obtain from (3.21) that
lull sz, < © D01 =€) | Aguoll 2 + Ce™ =) (Vidk 1 [ Vull2y 1))
Li(B3,) =~ £ - JHolL LE(L2)
je

ClIVull 3 (g0 -
(3.23)  +Ce THE )( + MY Agaollz + Mllaoll gy {e
gk

+C(Z2q€||A ol 2 + ol (e

q>k

C||V e
IVl (poey 1})\|uHLg<Bgl>

ClIVaull g1

Saa) [
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By using (3.13) again, we deduce from the fact /! < ¢2 that

IVallas S (0 - ) [ Auol)* + (3 NARu- TIul, s

[

JEZ JEZ
+ > AP, p 1 (Au = VIT) | 1 2.
JEZL

Thanks to (2.13), we get

1
(S NAR, w- VIul2 1)) S IVulZs g2,

JEZ

Hence, from (3.16), (3.20), and (3.2), it follows that

22N 3 ClIVull 1 o
IVl 212 S (Z(l—e Ct2])\|Ajuo||%2>2 + oMVl ><¢i2k+||vuy§3(L2))
JEZL

|V o . C|V o
ogy eI (5 M ST Agaollz + Mllaolgo LT < 1)) ull g
q>k ’ :
C||vV o
+0(22q5uA aoll 2 + llaoll g, (7 I )—1)>HUHQ(331)-
q>k ’1 7
Combining (3.23) and (3.24), we achieve
Ll BZ L2(L2
lull iz, + IVl
<O (1= )| Ajuo| 2 + Ce C”V“L1<L°°><\f2’“+HVuHLz<L2)
JEZ
3.25 ClIVull 1 poo A ClIVull 1 poo
325y e e (54 MY | Aqaollz + Mllaolgo {eT M4 — 1)) ull gy
q>k
ClIVull 1 poo
+C<Z2qquqaoH b+ laolgy (5 )—1)>HUHL,%<B§,1)-

q>k

Consequently, taking 7 small enough, k large enough, and then ¢ sufficiently small in (3.25), we
deduce (3.10), which completes the proof of of Proposition 3.2. U

Based on this, we may get further estimate about the pressure.

Proposition 3.3. Let ¢ € (0,1) and a € BS 1(RQ) such that 0 <b<1+a<b, and

(3.26) |la — SWHBE 1 <c

for some sufficiently small positive constant ¢ and some integer k € 7Z. Let F € Bgﬁl(R2) and

VII debe( F)e BS,I(R% solves

(3.27) div ((1 4 a)VII) = div F.

Then there holds

(3.28) 19T 59 < 1PNy, + lall g, 9T ge.
, ) 21
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Proof. We first deduce from (3.26) and b < 1 + a that

NS

1+ Spa=1+a+ (Sga—a) >
We rewrite (3.27) in the following form
div[(1 + Sa)VII] = div F + div [(Sga — a)VII],
and applying Aq to the above equation gives
div [(1 + Sgpa)A, VI = div A, F + div A [(Sga — a)VII] + div ([Ska, A,]VIIT).
Taking the L? inner product of this equation with AqH, we obtain that
IVIli 59, S N(Ska—a) VI g +I1F N9, + > [[1Ska, A VT[],
g€z

which follows from the product law in Besov spaces and (2.17) that
IVl gg, S I$ia -l [VTlgg, + ¥l gg, + llalls, 9Tz

Hence, due to (3.26), we deduce (3.28), which completes the proof of the proposition. O
Consequently, we may derive the main result of the section as follows.

Proposition 3.4. Under the assumptions of Proposition 3.2, there holds that for any t € [0,T}]

(3.29) lull oo g ) + lelly sz ) + 100l ag ) + IVE Ly g ) < Coy

where the constant Cy depends only on the initial data (po, up), and the positive time T} is deter-
mined by Proposition 3.2.

Proof. Back to the proof of Proposition 3.2, according to (3.5), we have
(3.30) div((1 + a)VII) = div(aAu) — div((u - V)u).

Combining Proposition 2.3 with Proposition 3.2, we know that the inequality (3.26) holds for any
t € [0, T1]. Then applying Proposition 2.5 to (3.30) yields that

V1 g, S llaull gy, + 1w P)ulgg, + lall g (IVIL 2,

and then
(3.31) VI Ly epg ) S ladullpypg ) + 1w V)ull gy )+ lall e

)
21

IVIT[ Ly r2)-

Due to product laws in Besov spaces (Proposition 2.2) and the interpolation inequality (2.6), we
get llo&ullypg ) S ol ) lulzgsg,) ond

t
I V)ull g ) S div (e ® wll g ) S lu @ ull s ) S /0 luligy , dr

t
S [ Wl lelag, dr Nl g o
Hence, thanks to Propositions 3.1, 3.2, and (2.31), we achieve

(3.32) lalzeay ) < Cor IVILzaz) < Coo - llellzya ) < Co
ladullpysg,) < Cor (- Vullyesg ) < Co.

Inserting (3.32) into (3.31) ensures that
91T 3 g, < Co
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On the other hand, thanks to (3.13), (3.15), (3.16) and (3.20), we readily deduce that

HUHE?O(BQJ) < (.

While from the momentum equations in (1.2) and (3.32), one has
90l gy N Dl g + 180~ VI 1y g )+ la(du — VI3 g
< Co O+ lallgeqsy )(lulgess,) + 190y ag,) < Co

g

which follows (3.29). This ends the proof of Proposition 3.4. O

4. THE PROOF OF THEOREM 1.1

We now turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. We divide the proof into two steps.
Step 1. Existence of strong solutions.
Given po with ag := py* — 1 € B3 1(R2) and satisfying (1.5), up € BSJ(R2), we first mollify the

initial data to be
def . def .
(4.1) Ao = ao * jn,  and  ug, = g * jn,

where j,(|z|) = n?j(|z|/n) is the standard Friedrich’s mollifier. Then we deduce from the standard
well-posedness theory of inhomogeneous Navier-Stokes system (see [13] for instance) that (1.2) has
a unique solution (py,, Uy, VII,) on [0, T;¥[ for some positive time T;. It is easy to observe from (4.1)
that

laonllpy < Cllaollpy — and Jluonllgy, < Clluollsg,,

£

so, under the assumptions of Theorem 1.1, we infer from Propositions 3.2 and 3.4 that there holds
lunllze g )+ umllza iz ) + 10umll g ) + IVl g sg ) < Co - and

(4.2) <y

”anHZ?O(BEz )
2,

for t < T}7. Without loss of generality, we may assume 7 is the lifespan of the approximate solutions
(pn, Un, VII,). Then, due to the uniform bounds (4.2), we conclude that 7F > T for some positive
constant 77. With (4.2), we get, by using a standard compactness argument (similar to the ones
in [12] for the system (1.2) in critical spaces with small initial density ag), that (1.2) has a solution

(p,u, VII) so that
(43) a € C([0,T1}; éyﬂ%% we C([0,T1); By (R*) N LY([0,T1; B3 (R?)),
' dyu, VIT € LY((0, Th]; B 1 (R)).

Furthermore, we can find some ¢y € (0,77) such that u(to) € H 1(R?). Based on the initial data
a(ty) € BS 1(]1%2) and u(tg) € H'(R?), we may deduce the global existence of the solution to (1.2)

accordingato [15, 22]. This completes the proof of the existence of the global solution to (1.2).

Step 2. Uniqueness of strong solutions.
Let’s first recall from (2.31) that for any ¢ > 0

Cllull 353
(4.4) lalze sy ) < laollgy e 470,

Let (p',u?, VII!) with i = 1,2 be two solutions of (1.2) which satisfies (1.6), (4.3), (4.4) with
1

p= 1+4a-
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We set

(6a, ou, VOII) def (a® — a*,u® — b, vIIZ — vIIh).

Then the system for (da,du, VIII) reads

dda +u? - Véa = —du - Va'

Orou + (u? - V)ou — (1 + a®)(Adu — V) = JF,
divdou = 0,

(0a, du)|i=o = (0,0),

where 0F is determined by §F = —(du - V)u! + da(Au' — VII').
For du, we first write the momentum equation of (4.5) as

(4.6) dou + (u? - V)ou — (1 + Spa?)(Adu — VOII) = H

(4.5)

with
H = (a* — Spa?)(Adu — VOII) — du - Vul + da(Aut — VIIY).
Applying Proposition 2.4 to (4.6) yields that for VO <t < T

C (4|7 Spa?2 T
160l oo (g1 0 ullzrpr ) < Ce ( by o, )
,00 t 2,00

(4.7)
x I ) + 1880 N g ) IVOTT ) -

Notice that
k
19 S0y ) S IV Sk e oy + IV S50 Uze sy ) S IV 02l 7oe oy + 28102 e

2 ki 2 k2
Stz sy ) + 2107 ze g,y S 2 M0l zge iy,

which, along with (4.3), (4.4), and (4.7), follows

(4.8) H(5UHL$O(B£(1>O) + ||5UHE%(B%700) < Cecwk(HV(SHHZ%(BQ—,;) + ”HHZ%(BQ;))‘
On the other hand, applying div to the momentum equation of (4.5) yields

(4.9) div[(1 + ¢*)Vél] = div G

with

G =a’Adu — 6u - Vu' —u? - Véu + da(Au' — VITY)
5
=(a® — Sa®)Adu + S’ Adu — du - Vu! —u? - Véu + Sa(Au' — VIIY) 31,

(=1

Thanks to Propositions 3.2 and 2.3, we get that, for any small constant ¢y > 0, there ex-
ist sufficiently large jo € N and a positive existence time T} such that |a? — Sja2||Z°°(Bl ) =
t 2,1

l|la? — Sja2HZ;X>(B;1) < la® — Sja2HZ;>°(B;1) < ¢p, for any j > jo and ¢ € [0,71]. Then applying
Proposition 2.5 to (4.9) leads to

TP 2 :
(4.10) HVCSHHZ%(B;’;) S (1 +2'||a ”Et‘”(B;,l)(l + |la Hfgo(g’;%yﬂ))(HGHE}(BQ;) + HleGHZtl(B;,io)).
While by Lemma 2.1 and product laws in Besov spaces in Proposition (2.2), one can see

. 2 2
HIlHZ}(B;i) + HleIlHZtl(B;;) = HIIHZtl(Biio) < [la® — Sma ||Z?°(B%’l)Hdu”i%(B%’OO)’
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Iallzy (g2 ) + v Lallzy g2 ) S 102 A0ullzy g2 ) + I TasuSma® |y 552
S 2ol sy
Similarly, one has
1(Is, I4)||Z%(B£§o) + [|div (I3, 14)”2,%(32*,20)
Sz 1) + 1T Voulgy gz ) + ITvsut®llzy pyz ) + 1 R(ui, Didu)llzy 55

+ 1 Tvue Voulgy 2 ) + HTVzSuVU2||Z%(B;,§O) + | R(Dpus, Oidu)llzy(py2 )
t
S [ 6ullpys (s, + ol )dr
0 ,00 s 5
and
t
Wsllzyqosz) + 1AVl sz 5 [ I5alis (180 52 + [V )
»O0 ,00 0
Thus, we obtain
. 2 2
NGz ;2 ) + IV Glligy g2y SNl = Smalpe gy I0ulligy gy + 27 I0ulgy (g )
t
[ (15ullgs sy, + el )+ Dol s+ 192 12))
which follows from (4.10) that
1 2 2
96Ty 5,1 ) S {1+ 210 ey ) (U ooy )
(4.11) x {1 = 8?00y gy + 2" Wl
t
[ (I8ullgs e, + 17+ IBala(80 -+ 9 ) .

Toward the estimate of ||H|| I1(BsL ) thanks to product laws in Besov spaces in Proposition 2.2,
t 2,00
we find

HH”Z,}(B;éJ 5 ||a2 - Ska2||itoo(]3%’l)(HA‘SUHZ%(B;’;) + ||V5H‘|E%(B£io))
(4.12) t . t . .
+ /0 [6ull s a1, dr + /O 16all 2 (1A |2 + VI 12) do.

Taking ko sufficiently large and 0 < T»(< T7) small enough, one may achieve, due to (4.4), that,
for any k > ko and t € (0, T5]

2 2
(413) ||CL - Ska ||ZtOO(B%,1) < co,
Therefore, thanks to (4.8), and (4.11)-(4.13), we prove
i 2 2
10ull oy + 100l sy ) S {1+ 2N ge sy L+ 0y ) }

t
2 2 1 2
x {na S R AP L PSRy M L Py (T P T P

t
; /0 I8all 22 (1A 12 + ||vnlr|Lz)dT}.
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Taking mg sufficiently large and the positive time 73(< T3) small enough, we obtain that, for any
m > mg and t € (0, T3]

19l e 552, + W0y sy Ly S {1+ 210z O+ NPz ) {27 100l g
t t
b [ Mol (g, + 1ol Jar + [ s (1o + 1902} .

On the other hand, by a classical estimate of the transport equation, we get from the first equation
in (4.5) that

@) Sl < 16 Vil ds < [ 1oulm IV anl ds s [ lul ds
While thanks to the interpolation inequality (2.7), H(SUHZ%(BS,OO) < |5u||%%(B£io)|5u||%%(3%m), one
may prove that
2" (U4 2010l pe iy, (L lla e g )0l g
S2m(1+ 2]'“@2”3;0(3;71)(1 + ||a2‘E;”(B;,l)))Hé“”%g(BQ,;o)Héu”%g(B{oo)
t
< nlldull gy )+ e (L4 2900 M gy (O N0l iy ))°)  10ulps dr

As a result, we get

||5UHL?°(BQ_,3>O) + ”5U||E%(B%m)
t
< Clan.kugom ) [ 16uls (14 1ol , + 02l )

t
+ [ 1ol (180 s + 19T ) ar ),

then for Ty € (0, T3] small enough, we obtain, V¢ € [0, Ty],

t
@15) Bl + Il S [ Boulliy e (180 o + 911 2}

Let N be an arbitrary positive integer which will be determined later on, then
18ull i zoy < ullpy o) < ( )RS DY )HAq(SuHLHLm).
g<—N 1-N<g<N ¢>N+1
Hence, due to Bernstein’s inequality (Lemma 2.1), we infer

16wl (zoey S 27N 0ull 1 22y + N1dull 7y + 27 Voul 1 (e

(B} o)
S 27N6ull 12y + Nlloullzy gy )+ 27NV oul| 11 oy

If we choose N such that

ull 12y + [[Voull L1 (ree)

N ~In(e+

);

0wl ze sy )
then there holds
l6ull L1 (r2) + [[Voull L1 (re0)

):

su sy < ||0u|+ In(e +
18ullzy(zo) < I6ullzy gy )Mo 10ulza sy )
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and then

2 ATl e 2y + !’VUi\\L;(Loo)})

416 Sull Ly (zy S 10ullz Infe +
(4.16) 0ull Ly ey S I0ullgrpy ) n( 10ullz2ps )

Notice that for & > 0 and z € (0, 1], there holds
In(e + az™!) <In(e+a)(1 —Inz).
Thus, plugging (4.16) into (4.15) leads to

Ioullze sy + 10ulzymy )
(4.17) t . .
< /0 10l z gy (1= 10ullzs gy ) (1Autlg2 + VT 2) dr.

oo)

As fol % = 400, and ||Aul|| 2 + || VITY]| ;2 is locally integral in RT, then by Osgood’s lemma

(Lemma 2.4), we obtain that du(t) = 0, which together with (4.14) and (4.11) implies that da(t) =
OVII(t) = 0 for all ¢t € [0,T] with T" small. Applying an inductive argument implies that du(t) =
da(t) = 0VII(t) = 0 for all £ > 0.

Furthermore, applying (4.17) (up to a slight modification) to the system (1.1), we may readily
prove that the solution (a, u) € C(Ry; B%yl(RQ)) x C(Ry; 3371(]1%2)) depends continuously on the

initial data (ag, uo) € 3571(R2) X 3871(R2). This completes the proof of Theorem 1.1. O
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